Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
A prenatal diagnostic is possible and very reliable when mother is carrier of the syndrome. First, it's necessary to determine the fetus' sex and then study X-chromosomes. In both cases, the probability to transfer the X-chromosome affected to the descendants is 50%. Male descendants who inherit the affected chromosome will express the symptoms of the syndrome, but females who do will be carriers.
A diagnosis can be made on the combination of clinical features. This can then be confirmed by gene sequencing.
MRI imaging can be used to detect whether the abducens nerve is present.
Since Duane-radial ray syndrome is a genetic disorder, a genetic test would be performed. One test that can be used is the SALL4 sequence analysis that is used to detect if SALL4 is present. If there is no pathogenic variant observed, a deletion/duplication analysis can be ordered following the SALL4 sequence analysis. As an alternative, another genetic test called a multi-gene panel can be ordered to detect SALL4 and any other genes of interest. The methods used for this panel vary depending on the laboratory.
A diagnosis can be made by an evaluation of medical history and clinical observation. The Beighton criteria are widely used to assess the degree of joint hypermobility. DNA and biochemical studies can help identify affected individuals. Diagnostic tests include collagen gene mutation testing, collagen typing via skin biopsy, echocardiogram, and lysyl hydroxylase or oxidase activity. However, these tests are not able to confirm all cases, especially in instances of an unmapped mutation, so clinical evaluation by a geneticist remains essential. If there are multiple affected individuals in a family, it may be possible to perform prenatal diagnosis using a DNA information technique known as a linkage study. There is poor knowledge about EDS among practitioners.
Laboratory testing reveals multiple mutations of HCS. Two genetic variants result in sporadic HCS symptoms, which are HCS-02 and HCS-03. These mutations produce symptoms that come and go, but have been present "de novo". HCS-03 was identified as the variant that is passed through afflicted family members and presents symptoms throughout the lifetime of the individual. All variants of HCS lead to the same premature termination of PEST sequences which compromise normal function of "NOTCH2". "NOTCH" has four different receptors, which have an affinity for similar ligands. They are classified as single-pass transmembrane receptors.
Treatment for NPS varies depending on the symptoms observed.
- Perform screening for renal disease and glaucoma, surgery, intensive physiotherapy, or genetic counseling.
- ACE inhibitors are taken to treat proteinuria and hypertension in NPS patients.
- Dialysis and renal transplant.
- Physical therapy, bracing and analgesics for joint pain.
- Other surgery treatments such as patella realignment, joint replacement, and the cutting away of the head of radius.
A combination of medical tests are used to diagnosis kniest dysplasia. These tests can include:
- Computer Tomography Scan(CT scan) - This test uses multiple images taken at different angles to produce a cross-sectional image of the body.
- Magnetic Resonance Imaging (MRI) - This technique proves detailed images of the body by using magnetic fields and radio waves.
- EOS Imaging - EOS imaging provides information on how musculoskeletal system interacts with the joints. The 3D image is scanned while the patient is standing and allows the physician to view the natural, weight-bearing posture.
- X-rays - X-ray images will allow the physician to have a closer look on whether or not the bones are growing abnormally.
The images taken will help to identify any bone anomalies. Two key features to look for in a patient with kniest dysplasia is the presence of dumb-bell shaped femur bones and coronal clefts in the vertebrae. Other features to look for include:
- Platyspondyly (flat vertebral bodies)
- Kyphoscoliosis (abnormal rounding of the back and lateral curvature of the spine)
- Abnormal growth of epiphyses, metaphyses, and diaphysis
- Short tubular bones
- Narrowed joint spaces
Genetic Testing - A genetic sample may be taken in order to closely look at the patient's DNA. Finding an error in the COL2A1 gene will help identify the condition as a type II chondroldysplasia.
There are several disorders that share some characteristics with Ehlers–Danlos syndrome. For example, in cutis laxa the skin is loose, hanging, and wrinkled. In EDS, the skin can be pulled away from the body but is elastic and returns to normal when let go. In Marfan syndrome, the joints are very mobile and similar cardiovascular complications occur. People with EDS tend to have a "Marfanoid" appearance (e.g., tall, skinny, long arms and legs, "spidery" fingers). However, physical appearance and features in several types of Ehlers–Danlos syndrome also have characteristics including short stature, large eyes, and the appearance of a small mouth and chin, due to a small palate. The palate can have a high arch, causing dental crowding. Blood vessels can sometimes be easily seen through translucent skin, especially on the chest. The genetic connective tissue disorder, Loeys-Dietz Syndrome, also has symptoms that overlap with EDS.
In the past, Menkes disease, a copper metabolism disorder, was thought to be a form of Ehlers–Danlos syndrome. It is not uncommon for patients to be misdiagnosed with fibromyalgia, bleeding disorders or other disorders that can mimic EDS symptoms before a correct diagnosis is made. Because of these similar disorders and complications that can arise from an un-monitored case of EDS, a correct diagnosis is very important. Pseudoxanthoma elasticum (PXE) is worth consideration in diagnosing a patient.
The treatment for Morquio syndrome consists of prenatal identification and of enzyme replacement therapy. On 12 February 2014, the US Food and Drug Administration approved the drug elosulfase alfa (Vimizim) for treating the disease.
Kabuki syndrome can be diagnosed using whole exome or whole genome sequencing. Some patients who were initially clinically diagnosed with Kabuki syndrome were actually found to have Wiedemann-Steiner syndrome.
During pregnancy, even in the absence of preconception cardiovascular abnormality, women with Marfan syndrome are at significant risk of aortic dissection, which is often fatal even when rapidly treated. Women with Marfan syndrome, then, should receive a thorough assessment prior to conception, and echocardiography should be performed every six to 10 weeks during pregnancy, to assess the aortic root diameter. For most women, safe vaginal delivery is possible.
Marfan syndrome is expressed dominantly. This means a child with one parent a bearer of the gene has a 50% probability of getting the syndrome. In 1996, the first preimplantation genetic testing (PGT) therapy for Marfan was conducted; in essence PGT means conducting a genetic test on early-stage IVF embryo cells and discarding those embryos affected by the Marfan mutation.
Diagnosis should be based on the clinical and radiographic findings and a genetic analysis can be assessed.
Since about 2002, some patients with this disorder have been offered drug therapy with bisphosphonates (a class of osteoporosis drugs) to treat problems with bone resorption associated with the bone breakdown and skeletal malformations that characterize this disorder. Brand names include Actonel (risedronate/alendronate), made by Merck Pharmaceuticals. Other drugs include Pamidronate, made by Novartis and Strontium Ranelate, made by Eli Lilly. However, for more progressive cases, surgery and bone grafting are necessary.
Many features of gerodermia osteodysplastica (GO) and another autosomal recessive form of cutis laxa, wrinkly skin syndrome (WSS, ""), are similar to such an extent that both disorders were believed to be variable phenotypes of a single disorder.
Several delineating factors, however, suggest that gerodermia osteodysplastica and wrinkly skin syndrome are distinct entities, but share the same clinic spectrum.
While the prevailing feature of wrinkly, loose skin is more localized with GO, it is usually systemic, yet eases in severity with age during the course of WSS. Also, as the fontanelles ("soft spots") are usually normal on the heads of infants with GO, they are often enlarged in WSS infants.
While WSS is associated with mutations of genes on chromosomes 2, 5, 7, 11 and 14; GO has been linked to mutations in the protein GORAB. A serum sialotransferrin type 2 pattern, also observed with WSS, is not present in GO patients.
But perhaps the most notable feature, differentiating GO from WSS and similar cutis laxa disorders, is the age-specific metaphyseal peg sometimes found in GO-affected long bone, near the knee. Not appearing until around age 4–5, then disappearing by physeal closure, this oddity of bone is thought to represent a specific genetic marker unique to GO and its effects on bone development.
The American Heart Association made the following recommendations for Marfan's patients with no or mild aortic dilation:
- Probably permissible activities: bowling, golf, skating (but not ice hockey), snorkeling, brisk walking, treadmill, stationary biking, modest hiking, and doubles tennis.
- Intermediate risk: basketball (both full- and half-court), racquetball, squash, running (sprinting and jogging), skiing (downhill and cross-country), soccer, singles tennis, touch (flag) football, baseball, softball, biking, lap swimming, motorcycling, and horseback riding.
- High risk: bodybuilding, weightlifting (non-free and free weights), ice hockey, rock climbing, windsurfing, surfing, and scuba diving.
Like treatment options, the prognosis is dependent on the severity of the symptoms. Despite the various symptoms and limitations, most individuals have normal intelligence and can lead a normal life.
The hallmark features of this syndrome are poorly developed fingernails, toenails, and patellae (kneecaps). Sometimes, this disease causes the affected person to have either no thumbnails or a small piece of a thumbnail on the edge of the thumb. The lack of development, or complete absence of fingernails results from the loss of function mutations in the LMX1B gene. This mutation may cause a reduction in dorsalising signals, which then results in the failure to normally develop dorsal specific structures such as nails and patellae. Other common abnormalities include elbow deformities, abnormally shaped pelvic (hip) bones, and kidney (renal) disease.
The visible signs and symptoms of MPS II in younger people are usually the first clues leading to a diagnosis. In general, the time of diagnosis usually occurs about 2 to 4 years of age. Doctors may use laboratory tests to provide additional evidence that an MPS disorder is present, before making a definitive diagnosis, by measuring the iduronate-2-sulfatase (I2S) enzyme activity. The most commonly used laboratory screening test for an MPS disorder is a urine test for GAGs. The urine test for GAGs can occasionally be normal, yet the child still may have an MPS disorder. A definitive diagnosis of Hunter syndrome is made by measuring I2S activity in serum, white blood cells, or fibroblasts from skin biopsy. In some people with Hunter syndrome, analysis of the" I2S" gene can determine clinical severity. Prenatal diagnosis is routinely available by measuring I2S enzymatic activity in amniotic fluid or in chorionic villus tissue.
Three main points in diagnosing thumb hypoplasia are: width of the first web space, instability of the involved joints and function of the thumb. Thorough physical examination together with anatomic verification at operation reveals all the anomalies. An X-ray of the hand and thumb in two directions is always mandatory. When the pediatrician thinks the condition is associated with some kind of syndrome other tests will be done. More subtle manifestations of types I and II may not be recognized, especially when more obvious manifestations of longitudinal radial deficiency in the opposite extremity are present. Therefore, a careful examination of both hands is important.
This syndrome has two forms, A and B, referred to as Morquio A and Morquio B syndrome or MPA IVA and MPS IVB. The two forms are distinguished by the gene product involved; A involves a malfunction in the GALNS gene product (galactosamine-6 sulfatase), while B involves a malfunction of the GLB1 gene product (beta-galactosidase).
There are a few different classifications conceived to categorize the spectrum of variety of congenital clasped thumb. In literature X classifications have been described for clasped thumb. The two most relevant of the existing classifications, to our opinion, are the classifications of McCarrol and Tjuyuguchi et al.
The most global format is the classification of McCarrol, which divides the congenital clasped thumbs into two groups. Group I includes the supple clasped thumb, when the thumb is only passively correctable. While complex clasped thumbs, thumbs which cannot be moved neither passively or actively, belong to group II.
Tjuyuguchi et al. designed a classification existing of three groups:
- Group I: The supple clasped thumb, where the thumb is passively abductable and extendable against the resistance of thumb flexors, without other digital anomalies.
- Group II: The clasped thumb with hand contractures, where the thumb is not passively extendable and abductable, with or without other digital anomalies.
- Group III: The clasped thumb which is associated with arthrogryposis.
The treatments of kabuki syndrome are still being developed due to its genetic nature. The first step to treatment is diagnosis. After diagnosis, the treatment of medical conditions can often be treated by medical intervention. There are also options in psychotherapy for young children with this disorder, as well as the family of the child. Genetic counseling is available as a preventative treatment for kabuki syndrome because it can be inherited and expressed by only having one copy of the mutated gene.
There are multiple classifications for the triphalangeal thumb. The reason for these different classifications is the heterogeneity in appearance of the TPT.
The classification according to Wood describes the shape of the extra phalanx: delta (Fig. 4), rectangular or full phalanx (Table 1). With the classification made by Buck-Gramcko a surgical treatment can be chosen (Table 1). Buck-Gramcko differentiates between six different shapes of the extra phalanx and associated malformations.
Table 1: Classifications of Wood and Buck-Gramcko
Currently there is no cure for these disorders. Medical care is directed at treating systemic conditions and improving the person's quality of life. Physical therapy and daily exercise may delay joint problems and improve the ability to move.
Changes to the diet will not prevent disease progression, but limiting milk, sugar, and dairy products has helped some individuals experiencing excessive mucus.
Surgery to remove tonsils and adenoids may improve breathing among affected individuals with obstructive airway disorders and sleep apnea. Sleep studies can assess airway status and the possible need for nighttime oxygen. Some patients may require surgical insertion of an endotrachial tube to aid breathing. Surgery can also correct hernias, help drain excessive cerebrospinal fluid from the brain, and free nerves and nerve roots compressed by skeletal and other abnormalities. Corneal transplants may improve vision among patients with significant corneal clouding.
Enzyme replacement therapy (ERT) are currently in use or are being tested. Enzyme replacement therapy has proven useful in reducing non-neurological symptoms and pain. Currently BioMarin Pharmaceutical produces enzyme replacement therapies for MPS type I and VI. Aldurazyme is an enzymatic replacement therapy for alpha-L-iduronidase produced by BioMarin for use in Type I MPS. In July 2006, the United States Food and Drug Administration approved a synthetic version of I2S produced by Shire Pharmaceuticals Group, called Elaprase, as a treatment for MPS type II (Hunter syndrome).
Bone marrow transplantation (BMT) and umbilical cord blood transplantation (UCBT) have had limited success in treating the mucopolysaccharidoses. Abnormal physical characteristics, except for those affecting the skeleton and eyes, may be improved, but neurologic outcomes have varied. BMT and UCBT are high-risk procedures and are usually performed only after family members receive extensive evaluation and counseling.
For information on clinical trials visit Clinical Trials Search