Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Space motion sickness is caused by changes in g-forces, which affect spatial orientation in humans. According to "Science Daily", "Gravity plays a major role in our spatial orientation. Changes in gravitational forces, such as the transition to weightlessness during a space voyage, influence our spatial orientation and require adaptation by many of the physiological processes in which our balance system plays a part. As long as this adaptation is incomplete, this can be coupled to motion sickness (nausea), visual illusions and disorientation."
Modern motion-sickness medications can counter space sickness but are rarely used because it is considered better to allow space travelers to adapt naturally over the first day or two than to suffer the drowsiness and other side effects of medication. However, transdermal dimenhydrinate anti-nausea patches are typically used whenever space suits are worn because vomiting into a space suit could be fatal, as it could obscure vision or block airflow. Space suits are generally worn during launch and landing by NASA crew members and always for extra-vehicular activities (EVAs). EVAs are consequently not usually scheduled for the first days of a mission to allow the crew to adapt, and transdermal dimenhydrinate patches are typically used as an additional backup measure.
Space motion sickness was effectively unknown during the earliest spaceflights as these were undertaken in very cramped conditions; it seems to be aggravated by being able to freely move around and so is more common in larger spacecraft. After the "Apollo 8" and "Apollo 9" flights, where astronauts reported space motion sickness to Mission Control and then were subsequently removed from the flight list, astronauts (e.g. the Skylab 4 crew) attempted to prevent Mission Control from learning about their own SAS experience, apparently out of concern for their future flight assignment potential.
As with sea sickness and car sickness, space motion sickness symptoms can vary from mild nausea and disorientation, to vomiting and intense discomfort; headaches and nausea are often reported in varying degrees. About half of sufferers experience mild symptoms; only around 10% suffer severely. The most extreme reaction yet recorded was that felt by Senator Jake Garn in 1985. After his flight NASA jokingly began using the informal "Garn scale" to measure reactions to space sickness. In most cases, symptoms last from 2–4 days. In an interview with Carol Butler, when asked about the origins of "Garn", Robert E. Stevenson was quoted as saying:
Simulator sickness is a subset of motion sickness that is typically experienced by pilots who undergo training for extended periods of time in flight simulators. Due to the spatial limitations imposed on these simulators, perceived discrepancies between the motion of the simulator and that of the vehicle can occur and lead to simulator sickness.
It is similar to motion sickness in many ways, but occurs in simulated environments and can be induced without actual motion. Symptoms of simulator sickness include discomfort, apathy, drowsiness, disorientation, fatigue, vomiting, and many more.
These symptoms can reduce the effectiveness of simulators in flight training and result in systematic consequences such as decreased simulator use, compromised training, ground safety, and flight safety. Pilots are less likely to want to repeat the experience in a simulator if they have suffered from simulator sickness and hence can reduce the number of potential users. It can also compromise training in two safety-critical ways:
1. It can distract the pilot during training sessions.
2. It can cause the pilot to adopt certain counterproductive behaviors to prevent symptoms from occurring.
Simulator sickness can also have post-training effects that can compromise safety after the simulator session, such as when the pilots drive away from the facility or fly while experiencing symptoms of simulator sickness.
The Simulator Sickness Questionnaire (SSQ) is currently the standard for measuring simulator sickness. The SSQ was developed based upon 1,119 pairs of pre-exposure/post-exposure scores from data that were collected and reported earlier. These data were collected from 10 Navy flight simulators representing both fixed-wing and rotary-wing aircraft. The simulators selected were both 6-DOF motion and fixed-base models, and also represented a variety of visual display technologies. The SSQ was developed and validated with data from pilots who reported to simulator training healthy and fit.
The SSQ is a self-report symptom checklist. It includes 16 symptoms that are associated with simulator sickness. Participants indicate the level of severity of the 16 symptoms that they are experiencing currently. For each of the 16 symptoms there are four levels of severity (none, slight, moderate, severe). The SSQ provides a Total Severity score as well as scores for three subscales (Nausea, Oculomotor, and Disorientation). The Total Severity score is a composite created from the three subscales. It is the best single measure because it provides an index of the overall symptoms. The three subscales provide diagnostic information about particular symptom categories:
- Nausea subscale is made up of symptoms such as increased salivation, sweating, nausea, stomach awareness, and burping.
- Oculomotor subscale includes symptoms such as fatigue, headache, eyestrain, and difficulty focusing.
- Disorientation subscale is composed of symptoms such as vertigo, dizzy (eyes open), dizzy (eyes closed), and blurred vision.
The three subscales are not orthogonal to one another. There is a general factor common to all of them. Nonetheless, the subscales provide differential information about participants' experience of symptoms and are useful for determining the particular pattern of discomfort produced by a given simulator. All scores have as their lowest level a natural zero (no symptoms) and increase with increasing symptoms reported.
Impingement syndrome can usually be diagnosed by history and physical exam. On physical exam, the physician may twist or elevate the patient's arm to test for reproducible pain (Neer sign and Hawkins-Kennedy test). These tests help localize the pathology to the rotator cuff; however, they are not specific for impingement. Neer sign may also be seen with subacromial bursitis.
The physician may inject lidocaine (usually combined with a steroid) into the bursa, and if there is an improved range of motion and decrease in pain, this is considered a positive "Impingement Test". It not only supports the diagnosis for impingement syndrome, but it is also therapeutic.
Plain x-rays of the shoulder can be used to detect some joint pathology and variations in the bones, including acromioclavicular arthritis, variations in the acromion, and calcification. However, x-rays do not allow visualization of soft tissue and thus hold a low diagnostic value. Ultrasonography, arthrography and MRI can be used to detect rotator cuff muscle pathology. MRI is the best imaging test prior to arthroscopic surgery. Due to lack of understanding of the pathoaetiology, and lack of diagnostic accuracy in the assessment process by many physicians, several opinions are recommended before intervention.
Professional divers are screened for risk factors during initial and periodical medical examination for fitness to dive. In most cases recreational divers are not medically screened, but are required to provide a medical statement before acceptance for training in which the most common and easy to identify risk factors must be declared. If these factors are declared, the diver may be required to be examined by a medical practitioner, and may be disqualified from diving if the conditions indicate.
Asthma, Marfan syndrome, and COPD pose a very high risk of pneumothorax. In some countries these may be considered absolute contraindications, while in others the severity may be taken into consideration. Asthmatics with a mild and well controlled condition may be permitted to dive under restricted circumstances.
"Vertigo" is often used (incorrectly) to describe a fear of heights, but it is more accurately a spinning sensation that occurs when one is not actually spinning. It can be triggered by looking down from a high place, or by looking straight up at a high place or tall object, but this alone does not describe vertigo. True vertigo can be triggered by almost any type of movement (e.g. standing up, sitting down, walking) or change in visual perspective (e.g. squatting down, walking up or down stairs, looking out of the window of a moving car or train). Vertigo is called "height vertigo" when the sensation of vertigo is triggered by heights.
Some desensitization treatments produce short-term improvements in symptoms. Long-term treatment success has been elusive.
With rest, the tail returns to normal within a few days. Pain relief, such as a nonsteroidal anti-inflammatory drug may be administered. The symptoms may reoccur.
Treatment is decompression of the quadrilateral space, with supportive therapy in recalcitrant cases.
Tests of vestibular system (balance) function include electronystagmography (ENG), Videonystagmograph (VNG), rotation tests, Computerized Dynamic Posturography (CDP), and Caloric reflex test.
Tests of auditory system (hearing) function include pure-tone audiometry, speech audiometry, acoustic-reflex, electrocochleography (ECoG), otoacoustic emissions (OAE), and auditory brainstem response test (ABR; also known as BER, BSER, or BAER).
Other diagnostic tests include magnetic resonance imaging (MRI) and computerized axial tomography (CAT, or CT).
Despite its wasting and at times long-lasting effects, most cases resolve themselves and recovery is usually good in 18–24 months, depending on how old the person in question is. For instance, a six-year-old could have brachial neuritis for only around 6 months, but a person in their early fifties could have it for over 3 years.
In terms of "barotrauma" the diagnostic workup for the affected individual would include the following:
Laboratory:
- Creatine kinase (CPK) level: Increases in CPK levels indicate tissue damage associated with decompression sickness.
- Complete blood count (CBC)
- Arterial blood gas (ABG) determination
Imaging:
- Chest radiography can show pneumothorax, and is indicated if there is chest discomfort or breathing difficulty
- Computed tomography (CT) scans and magnetic resonance imaging (MRI) may be indicated when there is severe headache or severe back pain after diving.
- CT is the most sensitive method to evaluate for pneumothorax. It can be used where barotrauma-related pneumothorax is suspected and chest radiograph findings are negative.
- Echocardiography can be used to detect the number and size of gas bubbles in the right side of the heart.
Solipsism syndrome refers to a psychological state in which a person feels that the world is not external to his or her mind. Periods of extended isolation may predispose people to this condition. In particular, the syndrome has been identified as a potential concern for individuals living in outer space for extended periods of time.
Differential considerations include similar rotator cuff denervation syndromes such as Parsonage–Turner syndrome, and compression of the suprascapular nerve at the spinoglenoid notch in which the infraspinatus, and to a lesser degree supraspinatus is involved.
It has been said by many dog owners that limber tail had been caused shortly (24 hours) after swimming in water that is too cold or on rare occasions too warm and indeed this has certainly produced this very condition. The actual cause is unknown but it may be caused by the narrowing of the space through which the spinal cord passes, typically due to degenerative change to the intervertebral disk spaces. These underlying changes may not lead to visible change until the problem is suddenly exacerbated, such as during physical activity, after trauma, etc. Occasionally other changes are seen prior to or in conjunction with limber tail disease, such as urinary or fecal incontinence, postural abnormalities in the pelvic limb, or pain in response to touching the lower back.
The difficulty of making the right vestibular diagnosis is reflected in the fact that in some populations, more than one third of the patients with a vestibular disease consult more than one physician – in some cases up to more than fifteen.
Diagnosis of a balance disorder is complicated because there are many kinds of balance disorders and because other medical conditions—including ear infections, blood pressure changes, and some vision problems—and some medications may contribute to a balance disorder. A person experiencing dizziness should see a physiotherapist or physician for an evaluation. A physician can assess for a medical disorder, such as a stroke or infection, if indicated. A physiotherapist can assess balance or a dizziness disorder and provide specific treatment.
The primary physician may request the opinion of an otolaryngologist to help evaluate a balance problem. An otolaryngologist is a physician/surgeon who specializes in diseases and disorders of the ear, nose, throat, head, and neck, sometimes with expertise in balance disorders. He or she will usually obtain a detailed medical history and perform a physical examination to start to sort out possible causes of the balance disorder. The physician may require tests and make additional referrals to assess the cause and extent of the disruption of balance. The kinds of tests needed will vary based on the patient's symptoms and health status. Because there are so many variables, not all patients will require every test.
Individuals experiencing solipsism syndrome feel that the world is not 'real' in the sense of being external to their own minds. The syndrome is characterized by feelings of loneliness, detachment and indifference to the outside world. Solipsism syndrome is not currently recognized as a psychiatric disorder by the American Psychiatric Association, though it shares similarities with depersonalization disorder, which is recognized. Solipsism syndrome is distinct from solipsism, which is not a psychological state but rather a philosophical position, namely that nothing exists or can be known to exist outside of one's own mind; advocates of this philosophy do not necessarily suffer from solipsism syndrome, and sufferers do not necessarily subscribe to solipsism as a school of intellectual thought.
Periods of extended isolation may predispose people to solipsism syndrome. In particular, the syndrome has been identified as a potential challenge for astronauts and cosmonauts on long-term missions,
and these concerns influence the design of artificial habitats.
The differential focuses on distinguishing it from similar entities such as quadrilateral space syndrome, which involves the teres minor and variably the deltoid, and suprascapular nerve impingement at the spinoglenoid notch, which predominantly involves the infraspinatus.
There are a few different classifications conceived to categorize the spectrum of variety of congenital clasped thumb. In literature X classifications have been described for clasped thumb. The two most relevant of the existing classifications, to our opinion, are the classifications of McCarrol and Tjuyuguchi et al.
The most global format is the classification of McCarrol, which divides the congenital clasped thumbs into two groups. Group I includes the supple clasped thumb, when the thumb is only passively correctable. While complex clasped thumbs, thumbs which cannot be moved neither passively or actively, belong to group II.
Tjuyuguchi et al. designed a classification existing of three groups:
- Group I: The supple clasped thumb, where the thumb is passively abductable and extendable against the resistance of thumb flexors, without other digital anomalies.
- Group II: The clasped thumb with hand contractures, where the thumb is not passively extendable and abductable, with or without other digital anomalies.
- Group III: The clasped thumb which is associated with arthrogryposis.
Impingement syndrome is usually treated conservatively, but sometimes it is treated with arthroscopic surgery or open surgery. Conservative treatment includes rest, cessation of painful activity, and physical therapy. Physical therapy treatments would typically focus at maintaining range of movement, improving posture, strengthening shoulder muscles, and reduction of pain. Physical therapists may employ the following treatment techniques to improve pain and function: joint mobilization, interferential therapy, accupuncture, soft tissue therapy, therapeutic taping, rotator cuff strengthening, and education regarding the cause and mechanism of the condition. NSAIDs and ice packs may be used for pain relief.
Therapeutic injections of corticosteroid and local anaesthetic may be used for persistent impingement syndrome. The total number of injections is generally limited to three due to possible side effects from the corticosteroid. A recent systematic review of level one evidence, showed corticoestroid injections only give small and transient pain relief.
A number of surgical interventions are available, depending on the nature and location of the pathology. Surgery may be done arthroscopically or as open surgery. The impinging structures may be removed in surgery, and the subacromial space may be widened by resection of the distal clavicle and excision of osteophytes on the under-surface of the acromioclavicular joint. Damaged rotator cuff muscles can be surgically repaired.
The basic diagnostic test is similar to a normal audiogram. The difference is that additionally to the hearing threshold at each test frequency also the lowest uncomfortable sound level is measured. This level is called "loudness discomfort level" (LDL) or "uncomfortable loudness level" (ULL). In patients with hyperacusis this level is considerably lower than in normal subjects, and usually across most parts of the auditory spectrum.
If these symptoms are observed/experienced it is important to contact a physician specializing in sports medicine (MD/DO), a doctor of podiatric medicine (DPM), or other qualified health care professional immediately so as to get the appropriate advice/treatment before serious damage occurs.
The 5 Ps of Anterior Compartment Syndrome:
1. Pain
2. Pallor
3. Paresthesia
4. Pulselessness
5. Paralysis (If not treated)
People with hemeralopia may benefit from sunglasses. Wherever possible, environmental illumination should be adjusted to comfortable level. Light-filtering lenses appear to help in people reporting photophobia.
Otherwise, treatment relies on identifying and treating any underlying disorder.
Treatment of congenital clasped thumb includes two types of therapy: conservative and surgical.