Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Several diseases can present with similar signs and symptoms to pneumonia, such as: chronic obstructive pulmonary disease (COPD), asthma, pulmonary edema, bronchiectasis, lung cancer, and pulmonary emboli. Unlike pneumonia, asthma and COPD typically present with wheezing, pulmonary edema presents with an abnormal electrocardiogram, cancer and bronchiectasis present with a cough of longer duration, and pulmonary emboli presents with acute onset sharp chest pain and shortness of breath.
In patients managed in the community, determining the causative agent is not cost-effective and typically does not alter management. For people who do not respond to treatment, sputum culture should be considered, and culture for "Mycobacterium tuberculosis" should be carried out in persons with a chronic productive cough. Testing for other specific organisms may be recommended during outbreaks, for public health reasons. In those hospitalized for severe disease, both sputum and blood cultures are recommended, as well as testing the urine for antigens to "Legionella" and "Streptococcus". Viral infections can be confirmed via detection of either the virus or its antigens with culture or polymerase chain reaction (PCR), among other techniques. The causative agent is determined in only 15% of cases with routine microbiological tests.
The diagnosis can be confirmed by the characteristic appearance of the chest x-ray, which shows widespread pulmonary infiltrates, and an arterial oxygen level (PaO) that is strikingly lower than would be expected from symptoms. Gallium 67 scans are also useful in the diagnosis. They are abnormal in approximately 90% of cases and are often positive before the chest x-ray becomes abnormal. The diagnosis can be definitively confirmed by histological identification of the causative organism in sputum or bronchio-alveolar lavage (lung rinse). Staining with toluidine blue, silver stain, periodic-acid schiff stain, or an immunofluorescence assay will show the characteristic cysts. The cysts resemble crushed ping-pong balls and are present in aggregates of 2 to 8 (and not to be confused with "Histoplasma" or "Cryptococcus", which typically do not form aggregates of spores or cells). A lung biopsy would show thickened alveolar septa with fluffy eosinophilic exudate in the alveoli. Both the thickened septa and the fluffy exudate contribute to dysfunctional diffusion capacity which is characteristic of this pneumonia.
"Pneumocystis" infection can also be diagnosed by immunofluorescent or histochemical staining of the specimen, and more recently by molecular analysis of polymerase chain reaction products comparing DNA samples. Notably, simple molecular detection of "Pneumocystis jirovecii" in lung fluids does not mean that a person has "Pneumocystis" pneumonia or infection by HIV. The fungus appears to be present in healthy individuals in the general population.
Chest radiographs (X-ray photographs) often show a pulmonary infection before physical signs of atypical pneumonia are observable at all.
This is occult pneumonia. In general, occult pneumonia is rather often present in patients with pneumonia and can also be caused by "Streptococcus pneumoniae", as the decrease of occult pneumonia after vaccination of children with a pneumococcal vaccine suggests.
Infiltration commonly begins in the perihilar region (where the bronchus begins) and spreads in a wedge- or fan-shaped fashion toward the periphery of the lung field. The process most often involves the lower lobe, but may affect any lobe or combination of lobes.
The most common organisms which cause lobar pneumonia are "Streptococcus pneumoniae", also called pneumococcus, "Haemophilus influenzae" and "Moraxella catarrhalis". "Mycobacterium tuberculosis", the tubercle bacillus, may also cause lobar pneumonia if pulmonary tuberculosis is not treated promptly.
Like other types of pneumonia, lobar pneumonia can present as community acquired, in immune suppressed patients or as nosocomial infection. However, most causative organisms are of the community acquired type.
Pathological specimens to be obtained for investigations include:
1. Sputum for culture, AAFBS and gram stain
2. Blood for full hemogram/complete blood count, ESR and other acute phase reactants
3. Procalcitonin test, more specific
The identification of the infectious organism (or other cause) is an important part of modern treatment of pneumonia. The anatomical patterns of distribution can be associated with certain organisms, and can help in selection of an antibiotic while waiting for the pathogen to be cultured.
In hospitalised patients who develop respiratory symptoms and fever, one should consider the diagnosis. The likelihood increases when upon investigation symptoms are found of respiratory insufficiency, purulent secretions, newly developed infiltrate on the chest X-Ray, and increasing leucocyte count. If pneumonia is suspected material from sputum or tracheal aspirates are sent to the microbiology department for cultures. In case of pleural effusion thoracentesis is performed for examination of pleural fluid. In suspected ventilator-associated pneumonia it has been suggested that bronchoscopy(BAL) is necessary because of the known risks surrounding clinical diagnoses.
In terms of the diagnosis of Klebsiella pneumonia the following can be done to determine if the individual has this infection, including "susceptibility testing" for (ESBL) "Extended Spectrum β-Lactamase", as well as:
- CBC
- Sputum(culture]
- Radiography(chest)
- CT scan
Antibiotics do not help the many lower respiratory infections which are caused by parasites or viruses. While acute bronchitis often does not require antibiotic therapy, antibiotics can be given to patients with acute exacerbations of chronic bronchitis. The indications for treatment are increased dyspnoea, and an increase in the volume or purulence of the sputum. The treatment of bacterial pneumonia is selected by considering the age of the patient, the severity of the illness and the presence of underlying disease. Amoxicillin and doxycycline are suitable for many of the lower respiratory tract infections seen in general practice.
Vaccination helps prevent bronchopneumonia, mostly against influenza viruses, adenoviruses, measles, rubella, streptococcus pneumoniae, haemophilus influenzae, diphtheria, bacillus anthracis, chickenpox, and bordetella pertussis.
Respiratory diseases may be investigated by performing one or more of the following tests
- Biopsy of the lung or pleura
- Blood test
- Bronchoscopy
- Chest x-ray
- Computed tomography scan, including high-resolution computed tomography
- Culture of microorganisms from secretions such as sputum
- Ultrasound scanning can be useful to detect fluid such as pleural effusion
- Pulmonary function test
- Ventilation—perfusion scan
A 2014 systematic review of clinical trials does not support using routine rapid viral testing to decrease antibiotic use for children in emergency departments. It is unclear if rapid viral testing in the emergency department for children with acute febrile respiratory infections reduces the rates of antibiotic use, blood testing, or urine testing. The relative risk reduction of chest x-ray utilization in children screened with rapid viral testing is 77% compared with controls. In 2013 researchers developed a breath tester that can promptly diagnose lung infections.
Mycoplasma is found more often in younger than in older people.
Older people are more often infected by Legionella.
Respiratory disease is a common and significant cause of illness and death around the world. In the US, approximately 1 billion "common colds" occur each year. A study found that in 2010, there were approximately 6.8 million emergency department visits for respiratory disorders in the U.S. for patients under the age of 18. In 2012, respiratory conditions were the most frequent reasons for hospital stays among children.
In the UK, approximately 1 in 7 individuals are affected by some form of chronic lung disease, most commonly chronic obstructive pulmonary disease, which includes asthma, chronic bronchitis and emphysema.
Respiratory diseases (including lung cancer) are responsible for over 10% of hospitalizations and over 16% of deaths in Canada.
In 2011, respiratory disease with ventilator support accounted for 93.3% of ICU utilization in the United States.
Patients with HCAP are more likely than those with community-acquired pneumonia to receive inappropriate antibiotics that do not target the bacteria causing their disease.
In 2002, an expert panel made recommendations about the evaluation and treatment of probable nursing home-acquired pneumonia. They defined probably pneumonia, emphasized expedite antibiotic treatment (which is known to improve survival) and drafted criteria for the hospitalization of willing patients.
For initial treatment in the nursing home, a fluoroquinolone antibiotic suitable for respiratory infections (moxifloxacin, for example), or amoxicillin with clavulanic acid plus a macrolide has been suggested. In a hospital setting, injected (parenteral) fluoroquinolones or a second- or third-generation cephalosporin plus a macrolide could be used. Other factors that need to be taken into account are recent antibiotic therapy (because of possible resistance caused by recent exposure), known carrier state or risk factors for resistant organisms (for example, known carrier of MRSA or presence of bronchiectasis predisposing to Pseudomonas aeruginosa), or suspicion of possible Legionella pneumophila infection (legionnaires disease).
In 2005, the American Thoracic Society and Infectious Diseases Society of America have published guidelines suggesting antibiotics specifically for HCAP. The guidelines recommend combination therapy with an agent from each of the following groups to cover for both "Pseudomonas aeruginosa" and MRSA. This is based on studies using sputum samples and intensive care patients, in whom these bacteria were commonly found.
- cefepime, ceftazidime, imipenem, meropenem or piperacillin–tazobactam; plus
- ciprofloxacin, levofloxacin, amikacin, gentamicin, or tobramycin; plus
- linezolid or vancomycin
In one observational study, empirical antibiotic treatment that was not according to international treatment guidelines was an independent predictor of worse outcome among HCAP patients.
Guidelines from Canada suggest that HCAP can be treated like community-acquired pneumonia with antibiotics targeting Streptococcus pneumoniae, based on studies using blood cultures in different settings which have not found high rates of MRSA or Pseudomonas.
Besides prompt antibiotic treatment, supportive measure for organ failure (such as cardiac decompensation) are also important. Another consideration goes to hospital referral; although more severe pneumonia requires admission to an acute care facility, this also predisposes to hazards of hospitalization such as delirium, urinary incontinence, depression, falls, restraint use, functional decline, adverse drug effects and hospital infections. Therefore, mild pneumonia might be better dealt with inside the long term care facility. In patients with a limited life expectancy (for example, those with advanced dementia), end-of-life pneumonia also requires recognition and appropriate, palliative care.
Diagnosis is typically based on a person's signs and symptoms. The color of the sputum does not indicate if the infection is viral or bacterial. Determining the underlying organism is typically not needed. Other causes of similar symptoms include asthma, pneumonia, bronchiolitis, bronchiectasis, and COPD. A chest X-ray may be useful to detect pneumonia.
Another common sign of bronchitis is a cough which lasts ten days to three weeks. If the cough lasts a month or a year it may be chronic bronchitis. In addition to having a cough a fever may be present. Acute bronchitis is normally caused by a viral infection. Typically these infections are rhinovirus, para influenza, or influenza. No specific testing is normally needed to diagnose acute bronchitis.
A number of labs may be helpful in determining the cause of shortness of breath. D-dimer while useful to rule out a pulmonary embolism in those who are at low risk is not of much value if it is positive as it may be positive in a number of conditions that lead to shortness of breath. A low level of brain natriuretic peptide is useful in ruling out congestive heart failure; however, a high level while supportive of the diagnosis could also be due to advanced age, renal failure, acute coronary syndrome, or a large pulmonary embolism.
A chest x-ray is useful to confirm or rule out a pneumothorax, pulmonary edema, or pneumonia. Spiral computed tomography with intravenous radiocontrast is the imaging study of choice to evaluate for pulmonary embolism.
The diagnostic criteria for acute exacerbation of COPD generally include a production of sputum that is purulent and may be thicker than usual, but without evidence of pneumonia (which involves mainly the alveoli rather than the bronchi). Also, diagnostic criteria may include an increase in frequency and severity of coughing, as well as increased shortness of breath.
A chest X-ray is usually performed on people with fever and, especially, hemoptysis (blood in the sputum), to rule out pneumonia and get information on the severity of the exacerbation. Hemoptysis may also indicate other, potentially fatal, medical conditions.
A history of exposure to potential causes and evaluation of symptoms may help in revealing the cause the exacerbation, which helps in choosing the best treatment. A sputum culture can specify which strain is causing a bacterial AECB. An early morning sample is preferred.
E-nose showed the ability to smell the cause of the exacerbation.
The definition of a COPD exacerbation is commonly described as "lost in translation," meaning that there is no universally accepted standard with regard to defining an acute exacerbation of COPD. Many organizations consider it a priority to create such a standard, as it would be a major step forward in the diagnosis and quality of treatment of COPD.
An oral whole cell nontypeable Haemophilus influenzae vaccine may protect against the disease, but "the evidence is mixed".
Treatment for "Klebsiella" pneumonia is by antibiotics such as aminoglycosides and cephalosporins, the choice depending upon the person’s health condition, medical history and severity of the disease.
"Klebsiella" possesses beta-lactamase giving it resistance to ampicillin, many strains have acquired an extended-spectrum beta-lactamase with additional resistance to carbenicillin, amoxicillin, and ceftazidime. The bacteria remain susceptible to aminoglycosides and cephalosporins, varying degrees of inhibition of the beta-lactamase with clavulanic acid have been reported. Infections due to multidrug-resistant gram-negative pathogens in the ICU have invoked the re-emergence of colistin. However, colistin-resistant strains of "K. pneumoniae" have been reported in ICUs. In 2009, strains of "K. pneumoniae" with gene called New Delhi metallo-beta-lactamase ( NDM-1) that even gives resistance against intravenous antibiotic carbapenem, were discovered in India and Pakistan."Klebsiella" cases in Taiwan have shown abnormal toxicity, causing liver abscesses in people with diabetes mellitus (DM), treatment consists of third generation cephalosporins.
Pneumonia is an illness which can result from a variety of causes, including infection with bacteria, viruses, fungi, or parasites. Pneumonia can occur in any animal with lungs, including mammals, birds, and reptiles.
Symptoms associated with pneumonia include fever, fast or difficult breathing, nasal discharge, and decreased activity.
Different animal species have distinct lung anatomy and physiology and are thus
affected by pneumonia differently. Differences in anatomy, immune systems, diet, and behavior also affects the particular microorganisms commonly causing
pneumonia. Diagnostic tools include physical examination, testing of the
sputum, and x-ray investigation. Treatment depends on the cause of pneumonia;
bacterial pneumonia is treated with antibiotics.
"See also:" Pneumonia, Pneumonic.
In immunocompromised patients, prophylaxis with co-trimoxazole (trimethoprim/sulfamethoxazole), atovaquone, or regular pentamidine inhalations may help prevent PCP.
Antipneumocystic medication is used with concomitant steroids in order to avoid inflammation, which causes an exacerbation of symptoms about four days after treatment begins if steroids are not used. By far the most commonly used medication is trimethoprim/sulfamethoxazole, but some patients are unable to tolerate this treatment due to allergies. Other medications that are used, alone or in combination, include pentamidine, trimetrexate, dapsone, atovaquone, primaquine, pafuramidine maleate (under investigation), and clindamycin. Treatment is usually for a period of about 21 days.
Pentamidine is less often used as its major limitation is the high frequency of side effects. These include acute pancreatic inflammation, kidney failure, liver toxicity, decreased white blood cell count, rash, fever, and low blood sugar.
Bronchiectasis may be diagnosed clinically or on review of imaging. The British Thoracic Society recommends all non-cystic-fibrosis-related bronchiectasis be confirmed by CT. CT may reveal tree-in-bud abnormalities, dilated bronchi, and cysts with defined borders.
Other investigations typically performed at diagnosis include blood tests, sputum cultures, and sometimes tests for specific genetic disorders.
Eosinophilic pneumonia is diagnosed in one of three circumstances: when a complete blood count reveals increased eosinophils and a chest x-ray or computed tomography (CT) identifies abnormalities in the lung, when a biopsy identifies increased eosinophils in lung tissue, or when increased eosinophils are found in fluid obtained by a bronchoscopy (bronchoalveolar lavage [BAL] fluid). Association with medication or cancer is usually apparent after review of a person's medical history. Specific parasitic infections are diagnosed after examining a person's exposure to common parasites and performing laboratory tests to look for likely causes. If no underlying cause is found, a diagnosis of AEP or CEP is made based upon the following criteria. AEP is most likely with respiratory failure after an acute febrile illness of usually less than one week, changes in multiple areas and fluid in the area surrounding the lungs on a chest x-ray, and greater than 25% eosinophils on a BAL. Other typical laboratory abnormalities include an elevated white blood cell count, erythrocyte sedimentation rate, and immunoglobulin G level. Pulmonary function testing usually reveals a restrictive process with reduced diffusion capacity for carbon monoxide. CEP is most likely when the symptoms have been present for more than a month. Laboratory tests typical of CEP include increased blood eosinophils, a high erythrocyte sedimentation rate, iron deficiency anemia, and increased platelets. A chest x-ray can show abnormalities anywhere, but the most specific finding is increased shadow in the periphery of the lung, away from the heart.
Antibiotics are the treatment of choice for bacterial pneumonia, with ventilation (oxygen supplement) as supportive therapy. The antibiotic choice depends on the nature of the pneumonia, the microorganisms most commonly causing pneumonia in the geographical region, and the immune status and underlying health of the individual. In the United Kingdom, amoxicillin is used as first-line therapy in the vast majority of patients acquiring pneumonia in the community, sometimes with added clarithromycin. In North America, where the "atypical" forms of community-acquired pneumonia are becoming more common, clarithromycin, azithromycin, or fluoroquinolones as single therapy have displaced the amoxicillin as first-line therapy.
Local patterns of antibiotic-resistance always need to be considered when initiating pharmacotherapy. In hospitalized individuals or those with immune deficiencies, local guidelines determine the selection of antibiotics.