Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The deterioration of kidney function may be signaled by a measurable decrease in urine output. Often, it is diagnosed on the basis of blood tests for substances normally eliminated by the kidney: urea and creatinine. Additionally, the ratio of BUN to creatinine is used to evaluate kidney injury. Both tests have their disadvantages. For instance, it takes about 24 hours for the creatinine level to rise, even if both kidneys have ceased to function. A number of alternative markers has been proposed (such as NGAL, KIM-1, IL18 and cystatin C), but none of them is currently established enough to replace creatinine as a marker of kidney function.
Once the diagnosis of AKI is made, further testing is often required to determine the underlying cause. It is useful to perform a bladder scan or a post void residual to rule out urinary retention. In post void residual, a catheter is inserted into the urinary tract immediately after urinating to measure fluid still in the bladder. 50–100 ml suggests neurogenic bladder dysfunction.
These may include urine sediment analysis, renal ultrasound and/or kidney biopsy. Indications for kidney biopsy in the setting of AKI include the following:
1. Unexplained AKI, in a patient with two non-obstructed normal sized kidneys
2. AKI in the presence of the nephritic syndrome
3. Systemic disease associated with AKI
4. Kidney transplant dysfunction
In medical imaging, the acute changes in the kidney are often examined with renal ultrasonography as the first-line modality, where CT scan and magnetic resonance imaging (MRI) are used for the follow-up examinations and when US fails to demonstrate abnormalities. In evaluation of the acute changes in the kidney, the echogenicity of the renal structures, the delineation of the kidney, the renal vascularity, kidney size and focal abnormalities are observed. CT is preferred in renal traumas, but US is used for follow-up, especially in the patients suspected for the formation of urinomas. A CT scan of the abdomen will also demonstrate bladder distension or hydronephrosis. However, in AKI, the use of IV contrast is contraindicated as the contrast agent used is nephrotoxic.
Nephrocalcinosis is diagnosed for the most part by imaging techniques. The imagings used are ultrasound (US), abdominal plain film and CT imaging. Of the 3 techniques CT and US are the more preferred. Nephrocalcinosis is considered present if at least two radiologists make the diagnosis on US and/or CT. In some cases a renal biopsy is done instead if imaging is not enough to confirm nephrocalcinosis. Once the diagnosis is confirmed additional testing is needed to find the underlying cause because the underlying condition may require treatment for reasons independent of nephrocalcinosis. These additional tests will measure serum, electrolytes, calcium, and phosphate, and the urine pH. If no underlying cause can be found then urine collection should be done for 24 hours and measurements of the excretion of calcium, phosphate, oxalate, citrate, and creatinine are looked at.
The "RIFLE criteria", proposed by the Acute Dialysis Quality Initiative (ADQI) group, aid in assessment of the severity of a person's acute kidney injury. The acronym RIFLE is used to define the spectrum of progressive kidney injury seen in AKI:
- Risk: 1.5-fold increase in the serum creatinine, or glomerular filtration rate (GFR) decrease by 25 percent, or urine output <0.5 mL/kg per hour for six hours.
- Injury: Two-fold increase in the serum creatinine, or GFR decrease by 50 percent, or urine output <0.5 mL/kg per hour for 12 hours
- Failure: Three-fold increase in the serum creatinine, or GFR decrease by 75 percent, or urine output of <0.3 mL/kg per hour for 24 hours, or no urine output (anuria) for 12 hours
- Loss: Complete loss of kidney function (e.g., need for renal replacement therapy) for more than four weeks
- End-stage kidney disease: Complete loss of kidney function (e.g., need for renal replacement therapy) for more than three months
Diagnosis is traditionally based on the clinical findings above in combination with excessive analgesic use. It is estimated that between 2 and 3 kg each of phenacetin or aspirin must be consumed before evidence of analgesic nephropathy becomes clinically apparent.
Once suspected, analgesic nephropathy can be confirmed with relative accuracy using computed tomography (CT) imaging without contrast. One trial demonstrated that the appearance of papillary calcifications on CT imaging was 92% sensitive and 100% specific for the diagnosis of analgesic nephropathy.
Complications of analgesic nephropathy include pyelonephritis and end-stage kidney disease. Risk factors for poor prognosis include recurrent urinary tract infection and persistently elevated blood pressure. Analgesic nephropathy also appears to increase the risk of developing cancers of the urinary system.
The standard diagnostic workup of suspected kidney disease is history & examination, as well as a urine test strip. Also, renal ultrasonography is essential in the diagnosis and management of kidney-related diseases.
Increasing access to, and use of, genome profiling may provide opportunity for diagnosis based on presentation and genetic risk factors, by identifying ApoL1 gene variants on chromosome 22.
Patients will require dialysis to compensate for the function of their kidneys.
Increasing fluid intake to yield a urine output of greater than 2 liters a day can be advantageous for all patients with nephrocalcinosis. Patients with hypercalciuria can reduce calcium excretion by restricting animal protein, limiting sodium intake to less than 100 meq a day and being lax of potassium intake. If changing ones diet alone does not result in an suitable reduction of hypercalciuria, a thiazide diuretic can be administered in patients who do not have hypercalcemia. Citrate can increase the solubility of calcium in urine and limit the development of nephrocalcinosis. Citrate is not given to patients who have urine pH equal to or greater than 7.
While the only diagnostic "gold standard" mechanism of diagnosis en vivo is via kidney biopsy, the clinical conditions and blood clotting disorder often associated with this disease may make it impractical in a clinical setting. Alternatively, it is diagnosed clinically, or at autopsy, with some authors suggesting diagnosis by contrast enhanced CT.
The definitive diagnosis of HN requires morphological examination. Common histological features can be identified in the renal and glomerular vasculature. Glomerulosclerosis is often present, either focally or globally, which is characterized by hardening of the vessel walls. Also, luminal narrowing or the arteries and arterioles of the kidney system. However, this type of procedure is likely to be preceded with a provisional diagnosis based on laboratory investigations.
In people with a history of stones, those who are less than 50 years of age and are presenting with the symptoms of stones without any concerning signs do not require helical CT scan imaging. A CT scan is also not typically recommended in children.
Otherwise a noncontrast helical CT scan with sections is the diagnostic modality of choice in the radiographic evaluation of suspected nephrolithiasis. All stones are detectable on CT scans except very rare stones composed of certain drug residues in the urine, such as from indinavir. Calcium-containing stones are relatively radiodense, and they can often be detected by a traditional radiograph of the abdomen that includes the kidneys, ureters, and bladder (KUB film). Some 60% of all renal stones are radiopaque. In general, calcium phosphate stones have the greatest density, followed by calcium oxalate and magnesium ammonium phosphate stones. Cystine calculi are only faintly radiodense, while uric acid stones are usually entirely radiolucent.
Where a CT scan is unavailable, an intravenous pyelogram may be performed to help confirm the diagnosis of urolithiasis. This involves intravenous injection of a contrast agent followed by a KUB film. Uroliths present in the kidneys, ureters or bladder may be better defined by the use of this contrast agent. Stones can also be detected by a retrograde pyelogram, where a similar contrast agent is injected directly into the distal ostium of the ureter (where the ureter terminates as it enters the bladder).
Renal ultrasonography can sometimes be useful, as it gives details about the presence of hydronephrosis, suggesting the stone is blocking the outflow of urine. Radiolucent stones, which do not appear on KUB, may show up on ultrasound imaging studies. Other advantages of renal ultrasonography include its low cost and absence of radiation exposure. Ultrasound imaging is useful for detecting stones in situations where X-rays or CT scans are discouraged, such as in children or pregnant women. Despite these advantages, renal ultrasonography in 2009 was not considered a substitute for noncontrast helical CT scan in the initial diagnostic evaluation of urolithiasis. The main reason for this is that compared with CT, renal ultrasonography more often fails to detect small stones (especially ureteral stones), as well as other serious disorders that could be causing the symptoms. A 2014 study confirmed that ultrasonography rather than CT as an initial diagnostic test results in less radiation exposure and did not find any significant complications.
Laboratory investigations typically carried out include:
- microscopic examination of the urine, which may show red blood cells, bacteria, leukocytes, urinary casts and crystals;
- urine culture to identify any infecting organisms present in the urinary tract and sensitivity to determine the susceptibility of these organisms to specific antibiotics;
- complete blood count, looking for neutrophilia (increased neutrophil granulocyte count) suggestive of bacterial infection, as seen in the setting of struvite stones;
- renal function tests to look for abnormally high blood calcium blood levels (hypercalcemia);
- 24 hour urine collection to measure total daily urinary volume, magnesium, sodium, uric acid, calcium, citrate, oxalate and phosphate;
- collection of stones (by urinating through a StoneScreen kidney stone collection cup or a simple tea strainer) is useful. Chemical analysis of collected stones can establish their composition, which in turn can help to guide future preventive and therapeutic management.
A detailed and accurate history and physical will help determine if uremia is acute or chronic. In the cases of acute uremia, causes may be identified and eliminated, leading to higher chance for recovery of normal renal function, if treated correctly.
A 24-hour urine collection for determination of creatinine clearance may be an alternative, although not a very accurate test due to the collection procedure. Another laboratory test that should be considered is urinalysis with microscopic examination for the presence of protein, casts, blood and pH.
Prompt treatment of some causes of azotemia can result in restoration of kidney function; delayed treatment may result in permanent loss of renal function. Treatment may include hemodialysis or peritoneal dialysis, medications to increase cardiac output and increase blood pressure, and the treatment of the condition that caused the azotemia.
Classically, MSK is seen as hyperdense papillae with clusters of small stones on ultrasound examination of the kidney or with an abdominal x-ray. The irregular (ectatic) collecting ducts are often seen in MSK, which are sometimes described as having a "paintbrush-like" appearance, are best seen on intravenous urography. However, IV urography has been largely replaced by contrast-enhanced, high-resolution helical CT with digital reconstruction.
Acute tubular necrosis (ATN) is a medical condition involving the death of tubular epithelial cells that form the renal tubules of the kidneys. ATN presents with acute kidney injury (AKI) and is one of the most common causes of AKI. Common causes of ATN include low blood pressure and use of nephrotoxic drugs. The presence of "muddy brown casts" of epithelial cells found in the urine during urinalysis is pathognomonic for ATN. Management relies on aggressive treatment of the factors that precipitated ATN (e.g. hydration and cessation of the offending drug). Because the tubular cells continually replace themselves, the overall prognosis for ATN is quite good if the cause is corrected, and recovery is likely within 7 to 21 days.
ATN may be classified as either "toxic" or "ischemic". Toxic ATN occurs when the tubular cells are exposed to a toxic substance (nephrotoxic ATN). Ischemic ATN occurs when the tubular cells do not get enough oxygen, a condition that they are highly sensitive and susceptible to, due to their very high metabolism.
Millions of people across the world suffer from kidney disease. Of those millions, several thousand will eventually or do need kidney transplants. Out of those millions in the world, 16,500 in the United States needed a kidney transplant in 2008. Of those 16,500 people, 5,000 died while waiting for a transplant. Currently, there is a shortage of donors, and in 2007 there were only 64,606 kidney transplants in the world. This shortage of donors is causing countries to place monetary value on kidneys. Countries such as Iran and Singapore are eliminating their lists by paying their citizens to donate. Also, the black market accounts for 5-10 percent of transplants that occur worldwide. The act of buying an organ through the black market is illegal in the United States. To be put on the waiting list for a kidney transplant, patients must first be referred by a physician, then they must choose and contact a donor hospital. Once they choose a donor hospital, patients must then receive an evaluation to make sure they are sustainable to receive a transplant. In order to be a match for a kidney transplant, patients must match blood type and human leukocyte antigen factors with their donors. They must also have no reactions to the antibodies from the donor’s kidneys.
Osmotic nephrosis refers to structural changes that occur at the cellular level in the human kidney. Cells, primarily of the straight proximal tubule, swell due to the formation of large vacuoles in the cytoplasm. These vacuoles occur in the presence of large amounts of certain solutes circulating in the tubules. However, despite the condition's name, the solutes do not cause change through osmotic forces but through pinocytosis. Once inside the cytoplasm, pinocytic vacuoles combine with each other and with lysosomes to form large vacuoles that appear transparent under microscopic examination.
There may be no symptomatic presentation with this condition, or it may confused with other nephrotic conditions such as Tubular calcineurin-inhibitor toxicity. Affected cells of the proximal tubule may be passed in the urine, but a kidney biopsy is the only sure way to make a diagnosis.
Responsible exogenous solutes include sucrose-containing IVIg, mannitol, dextran, contrast dye, and hydroxyethyl starch. Prevention includes standard preventions for iatrogenic kidney damage. Osmotic nephrosis is usually reversible but can lead to chronic renal failure.
Phosphate nephropathy consists of damage to the kidneys caused by the formation of phosphate crystals within the kidney's tubules, damaging the nephron, and can cause acute kidney failure.
Phosphate nephropathy frequently occurs following the ingestion of oral sodium phosphate laxatives such as C.B. Fleet's Phospho soda and Salix's Visocol taken for bowel cleansing prior to a colonoscopy. The risk of this complication is increased with age, dehydration, or in the presence of hypertension or if the patient is taking an ACE inhibitor or angiotensin receptor blocker. Other agents used for bowel preparation (e.g. magnesium citrate or PEG-3350 & electrolyte-based purgatives such as Colyte or Golytely) do not carry this risk.
According to the U.S. Food and Drug Administration (FDA), "Acute phosphate nephropathy is a form of acute kidney injury that is associated with deposits of calcium-phosphate crystals in the renal tubules that may result in permanent renal function impairment. Acute phosphate nephropathy is a rare, serious adverse event that has been associated with the use of OSPs. The occurrence of these events was previously described in an Information for Healthcare Professionals sheet and an FDA Science Paper issued in May 2006. Additional cases of acute phosphate nephropathy have been reported to FDA and described in the literature since these were issued."
When a kidney damaged by phosphate nephropathy is biopsied, the pathological findings are typical of nephrocalcinosis: diffuse tubular injury with calcium phosphate crystal deposition.
If an underlying muscle disease is suspected, for instance if there is no obvious explanation or there have been multiple episodes, it may be necessary to perform further investigations. During an attack, low levels of carnitine in the blood and high levels of acylcarnitine in blood and urine may indicate a lipid metabolism defect, but these abnormalities revert to normal during convalescence. Other tests may be used at that stage to demonstrate these disorders. Disorders of glycolysis can be detected by various means, including the measurement of lactate after exercise; a failure of the lactate to rise may be indicative of a disorder in glycolysis, while an exaggerated response is typical of mitochondrial diseases. Electromyography (EMG) may show particular patterns in specific muscle diseases; for instance, McArdle's disease and phosphofructokinase deficiency show a phenomenon called "cramp-like contracture". There are genetic tests available for many of the hereditary muscle conditions that predispose to myoglobinuria and rhabdomyolysis.
Muscle biopsy can be useful if an episode of rhabdomyolysis is thought to be the result of an underlying muscle disorder. A biopsy sample taken during an episode is often uninformative, as it will show only evidence of cell death or may appear normal. Taking the sample is therefore delayed for several weeks or months. The histopathological appearance on the biopsy indicates the nature of the underlying disorder. For instance, mitochondrial diseases are characterized by "ragged red fibers". Biopsy sites may be identified by medical imaging, such as magnetic resonance imaging, as the muscles may not be uniformly affected.
The pH of patient's blood is highly variable, and acidemia is not necessarily characteristic of sufferers of dRTA at any given time. One may have dRTA caused by alpha intercalated cell failure without necessarily being acidemic; termed "incomplete dRTA," which is characterized by an inability to acidify urine, without affecting blood pH or plasma bicarbonate levels. The diagnosis of dRTA can be made by the observation of a urinary pH of greater than 5.3 in the face of a systemic acidemia (usually taken to be a serum bicarbonate of 20 mmol/l or less). In the case of an incomplete dRTA, failure to acidify the urine following an oral acid loading challenge is often used as a test. The test usually performed is "the short ammonium chloride test", in which ammonium chloride capsules are used as the acid load. More recently, an alternative test using furosemide and fludrocortisone has been described.
Interestingly, dRTA has been proposed as a possible diagnosis for the unknown malady plaguing Tiny Tim in Charles Dickens' A Christmas Carol.
Compartment syndrome is a clinical diagnosis, i.e., no diagnostic test conclusively proves its presence or absence, but direct measurement of the pressure in a fascial compartment, and the difference between this pressure and the blood pressure, may be used to assess its severity. High pressures in the compartment and a small difference between compartment pressure and blood pressure indicate that the blood supply is likely to be insufficient, and that surgical intervention may be needed.
Disseminated intravascular coagulation, another complication of rhabdomyolysis and other forms of critical illness, may be suspected on the basis of unexpected bleeding or abnormalities in hematological tests, such as a decreasing platelet count or prolongation of the prothrombin time. The diagnosis can be confirmed with standard blood tests for DIC, such as D-dimer.