Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Biochemical tests used in the identification of infectious agents include the detection of metabolic or enzymatic products characteristic of a particular infectious agent. Since bacteria ferment carbohydrates in patterns characteristic of their genus and species, the detection of fermentation products is commonly used in bacterial identification. Acids, alcohols and gases are usually detected in these tests when bacteria are grown in selective liquid or solid media.
The isolation of enzymes from infected tissue can also provide the basis of a biochemical diagnosis of an infectious disease. For example, humans can make neither RNA replicases nor reverse transcriptase, and the presence of these enzymes are characteristic of specific types of viral infections. The ability of the viral protein hemagglutinin to bind red blood cells together into a detectable matrix may also be characterized as a biochemical test for viral infection, although strictly speaking hemagglutinin is not an "enzyme" and has no metabolic function.
Serological methods are highly sensitive, specific and often extremely rapid tests used to identify microorganisms. These tests are based upon the ability of an antibody to bind specifically to an antigen. The antigen, usually a protein or carbohydrate made by an infectious agent, is bound by the antibody. This binding then sets off a chain of events that can be visibly obvious in various ways, dependent upon the test. For example, "Strep throat" is often diagnosed within minutes, and is based on the appearance of antigens made by the causative agent, "S. pyogenes", that is retrieved from a patients throat with a cotton swab. Serological tests, if available, are usually the preferred route of identification, however the tests are costly to develop and the reagents used in the test often require refrigeration. Some serological methods are extremely costly, although when commonly used, such as with the "strep test", they can be inexpensive.
Complex serological techniques have been developed into what are known as Immunoassays. Immunoassays can use the basic antibody – antigen binding as the basis to produce an electro-magnetic or particle radiation signal, which can be detected by some form of instrumentation. Signal of unknowns can be compared to that of standards allowing quantitation of the target antigen. To aid in the diagnosis of infectious diseases, immunoassays can detect or measure antigens from either infectious agents or proteins generated by an infected organism in response to a foreign agent. For example, immunoassay A may detect the presence of a surface protein from a virus particle. Immunoassay B on the other hand may detect or measure antibodies produced by an organism's immune system that are made to neutralize and allow the destruction of the virus.
Instrumentation can be used to read extremely small signals created by secondary reactions linked to the antibody – antigen binding. Instrumentation can control sampling, reagent use, reaction times, signal detection, calculation of results, and data management to yield a cost effective automated process for diagnosis of infectious disease.
Another principal tool in the diagnosis of infectious disease is microscopy. Virtually all of the culture techniques discussed above rely, at some point, on microscopic examination for definitive identification of the infectious agent. Microscopy may be carried out with simple instruments, such as the compound light microscope, or with instruments as complex as an electron microscope. Samples obtained from patients may be viewed directly under the light microscope, and can often rapidly lead to identification. Microscopy is often also used in conjunction with biochemical staining techniques, and can be made exquisitely specific when used in combination with antibody based techniques. For example, the use of antibodies made artificially fluorescent (fluorescently labeled antibodies) can be directed to bind to and identify a specific antigens present on a pathogen. A fluorescence microscope is then used to detect fluorescently labeled antibodies bound to internalized antigens within clinical samples or cultured cells. This technique is especially useful in the diagnosis of viral diseases, where the light microscope is incapable of identifying a virus directly.
Other microscopic procedures may also aid in identifying infectious agents. Almost all cells readily stain with a number of basic dyes due to the electrostatic attraction between negatively charged cellular molecules and the positive charge on the dye. A cell is normally transparent under a microscope, and using a stain increases the contrast of a cell with its background. Staining a cell with a dye such as Giemsa stain or crystal violet allows a microscopist to describe its size, shape, internal and external components and its associations with other cells. The response of bacteria to different staining procedures is used in the taxonomic classification of microbes as well. Two methods, the Gram stain and the acid-fast stain, are the standard approaches used to classify bacteria and to diagnosis of disease. The Gram stain identifies the bacterial groups Firmicutes and Actinobacteria, both of which contain many significant human pathogens. The acid-fast staining procedure identifies the Actinobacterial genera "Mycobacterium" and "Nocardia".
There are a large number of clinical trials either ongoing or recently completed in the investigation of graft-versus-host disease treatment and prevention. Currently, there are no reliable molecular markers reflecting the onset or clinical course of aGVHD. However, it has been shown that genes responsible for cytokine signaling, inflammatory response, and regulation of cell cycle are differentially expressed in patinets with fatal GvHD versus „indolent“ GvHD.
On May 17, 2012, Osiris Therapeutics announced that Canadian health regulators approved Prochymal, its drug for acute graft-versus host disease in children who have failed to respond to steroid treatment. Prochymal is the first stem cell drug to be approved for a systemic disease.
In January 2016, Mesoblast released results of a Phase2 clinical trial on 241 children with acute Graft-versus-host disease, that was not responsive to steroids. The trial was of a mesenchymal stem cell therapy known as remestemcel-L or MSC-100-IV. Survival rate was 82% (vs 39% of controls) for those who showed some improvement after 1 month, and in the long term 72% (vs 18% of controls) for those that showed little effect after 1 month.
Intravenously administered glucocorticoids, such as prednisone, are the standard of care in acute GvHD and chronic GVHD. The use of these glucocorticoids is designed to suppress the T-cell-mediated immune onslaught on the host tissues; however, in high doses, this immune-suppression raises the risk of infections and cancer relapse. Therefore, it is desirable to taper off the post-transplant high-level steroid doses to lower levels, at which point the appearance of mild GVHD may be welcome, especially in HLA mis-matched patients, as it is typically associated with a graft-versus-tumor effect.. Cyclosporine and tacrolimus are inhibitors of calcineurin. Both substances are structurally different but have the same mechanism of action. Cyclosporin binds to the cytosolic protein Peptidyl-prolyl cis-trans isomerase A (known as cyclophilin), while tacrolimus binds to the cytosolic protein Peptidyl-prolyl cis-trans isomerase FKBP12. These complexes inhibit calcineurin, block dephosphorylation of the transcription factor NFAT of activated T-cells and its translocation into the nucleus. Standard prophylaxis involves the use of cyclosporine for six months with methotrexate. Cyclosporin levels should be maintained above 200 ng/ml.
Other substances that have been studied for GvHD prophylaxis include, for example: sirolimus, pentostatin and alemtuzamab.
In August 2017 the US FDA approved ibrutinib to treat chronic GvHD after failure of one or more other systemic treatments.
In eosinophilic myocarditis, echocardiography typically gives non-specific and only occasional findings of endocardium thickening, left ventricular hypertrophy, left ventricle dilation, and involvement of the mitral and/or tricuspid valves. However, in acute necrotizing eosinophilic myocarditis, echocardiography usually gives diagnostically helpful evidence of a non-enlarged heart with a thickened and poorly contracting left ventricle. Gadolinium-based cardiac magnetic resonance imaging is the most useful non-invasive procedure for diagnosing eosinophilic myocarditis. It supports this diagnosis if it shows at least two of the following abnormalities: a) an increased signal in T2-weighted images; b) an increased global myocardial early enhancement ratio between myocardial and skeletal muscle in enhanced T1 images and c) one or more focal enhancements distributed in a non-vascular pattern in late enhanced T1-weighted images. Additionally, and unlike in other forms of myocarditis, eosinophilic myocarditis may also show enhanced gadolinium uptake in the sub-endocardium. However, the only definitive test for eosinophilic myocarditis in cardiac muscle biopsy showing the presence of eosinophilic infiltration. Since the disorder may be patchy, multiple tissue samples taken during the procedure improve the chances of uncovering the pathology but in any case negative results do not exclude the diagnosis.
Patients often have a refractory disease course but some patients may respond to phototherapy.
The CDC states that PCR testing from a single blood draw is not sufficiently sensitive for "B." "henselae" testing, and can result in high false negative rates due to a small sample volume and levels below the limit of molecular detection.
"Bartonella" spp. are fastidious, slow-growing bacteria that are difficult to grow using traditional solid agar plate culture methods due to complex nutritional requirements and potentially a low number of circulating bacteria. This conventional method of culturing "Bartonella" spp. from blood inoculates plated directly onto solid agar plates requires an extended incubation period of 21 days due to the slow growth rate.
Immunoprecipitation, immunoblotting and enzyme-link immunosorbent assay (ELISA)
Poot et al. 2013 determined that immunoprecipitation for antibodies against envoplakin and periplakin or alpha2-macroglobulin-like–1 is the most sensitive test. However, alpha2-macroglobulin-like-1 can also be detected in patients with toxic epidermal necrosis.
Patients with high concentration of antibodies show intercellular, intraepidermal antibodies as well as along the dermoepidermal junction. Patients with low concentration of antibodies only present with them inside the cells (intercellular).
If the results are negative, perform the additional assays regardless. Cases have been confirmed that reported with initial negative DIF and IDIF tests.
"Bartonella" growth rates improve when cultured in an enrichment inoculation step in a liquid insect-based medium such as "Bartonella" α-Proteobacteria Growth Medium (BAPGM) or Schneider’s Drosophila-based insect powder medium. Several studies have optimized the growing conditions of "Bartonella" spp. cultures in these liquid media, with no change in bacterial protein expressions or host interactions "in vitro". Insect-based liquid media supports the growth and co-culturing of at least seven "Bartonella" species, reduces bacterial culturing time and facilitates PCR detection and isolation of "Bartonella" spp. from animal and patient samples. Research shows that DNA may be detected following direct extraction from blood samples and become negative following enrichment culture, thus PCR is recommended after direct sample extraction and also following incubation in enrichment culture. Several studies have successfully optimized sensitivity and specificity by using PCR amplification (pre-enrichment PCR) and enrichment culturing of blood draw samples, followed by PCR (post-enrichment PCR) and DNA sequence identification.
Although frequently employed to treat patients experiencing the cytokine storm associated with ARDS, corticosteroids and NSAIDs have been evaluated in clinical trials and have shown no effect on lung mechanics, gas exchange, or beneficial outcome in early established ARDS.
The current mortality is over 60% after 5 years. However, due to hematopoietic stem cell transplantation being performed only in recent years, this number could potentially be lowered in the future. In patients with CNS involvement, treatment with Interferon alpha at US National Cancer Institute resulted in complete remission in 90% of patients.
Preliminary data from clinical trials involving patients with sepsis-induced ARDS have shown a reduction in organ damage and a trend toward improvement in survival (survival in ARDS is approximately 60%) after administering or upregulating a variety of free radical scavengers (antioxidants).
The basic tests performed when an immunodeficiency is suspected should include a full blood count (including accurate lymphocyte and granulocyte counts) and immunoglobulin levels (the three most important types of antibodies: IgG, IgA and IgM).
Other tests are performed depending on the suspected disorder:
- Quantification of the different types of mononuclear cells in the blood (i.e. lymphocytes and monocytes): different groups of T lymphocytes (dependent on their cell surface markers, e.g. CD4+, CD8+, CD3+, TCRαβ and TCRγδ), groups of B lymphocytes (CD19, CD20, CD21 and Immunoglobulin), natural killer cells and monocytes (CD15+), as well as activation markers (HLA-DR, CD25, CD80 (B cells).
- Tests for T cell function: skin tests for delayed-type hypersensitivity, cell responses to mitogens and allogeneic cells, cytokine production by cells
- Tests for B cell function: antibodies to routine immunisations and commonly acquired infections, quantification of IgG subclasses
- Tests for phagocyte function: reduction of nitro blue tetrazolium chloride, assays of chemotaxis, bactericidal activity.
Due to the rarity of many primary immunodeficiencies, many of the above tests are highly specialised and tend to be performed in research laboratories.
Criteria for diagnosis were agreed in 1999. For instance, an antibody deficiency can be diagnosed in the presence of low immunoglobulins, recurrent infections and failure of the development of antibodies on exposure to antigens. The 1999 criteria also distinguish between "definitive", "probable" and "possible" in the diagnosis of primary immunodeficiency. "Definitive" diagnosis is made when it is likely that in 20 years, the patient has a >98% chance of the same diagnosis being made; this level of diagnosis is achievable with the detection of a genetic mutation or very specific circumstantial abnormalities. "Probable" diagnosis is made when no genetic diagnosis can be made, but the patient has all other characteristics of a particular disease; the chance of the same diagnosis being made 20 years later is estimated to be 85-97%. Finally, a "possible" diagnosis is made when the patient has only some of the characteristics of a disease are present, but not all.
Early diagnosis of Severe Combined Immunodeficiency is rare because doctors do not routinely count each type of white blood cell in newborns.
CBC and blood film: decreased platelets and schistocytes PT, aPTT, fibrinogen: normal Markers of hemolysis: increased unconjugated bilirubin, increased LDH, decreased haptoglobin Negative Coombs test
Creatinine, urea, to follow renal function ADAMSTS-13 gene, activity or inhibitor testing (TTP)
About half of US states are performing screening for SCID in newborns using real-time quantitative PCR to measure the concentration of T-cell receptor excision circles. Wisconsin and Massachusetts (as of February 1, 2009) screen newborns for SCID. Michigan began screening for SCID in October 2011. Some SCID can be detected by sequencing fetal DNA if a known history of the disease exists. Otherwise, SCID is not diagnosed until about six months of age, usually indicated by recurrent infections. The delay in detection is because newborns carry their mother's antibodies for the first few weeks of life and SCID babies look normal.
This disease entitiy was described in detail in 2007 but case reports of graft-versus-host-like disease in the setting of thymoma date back to at least the mid 1990's.
Treatment depends on the grade (I-III) but typically consist of cortisone, rituximab and chemotherapy (etoposide, vincristine, cyclophosphamide, doxorubicin). Methotrexate has been seen to induce LYG. Interferon alpha has been used by the US National Cancer Institute with varying results. In recent years hematopoietic stem cell transplantation has been performed on LYG-patients with relative good success; a 2013 study identifying 10 cases found that 8 patients survived the treatment and were disease free several years later. Two of the disease free patients later died, one from suicide and one from graft versus host disease after a second transplantation 4 years later. The remaining two patients died from sepsis after the transplantation.
The prognosis of eosinophilic myocarditis is anywhere from rapidly fatal to extremely chronic or non-fatal. Progression at a moderate rate over many months to years is the most common prognosis. In addition to the speed of inflammation-based heart muscle injury, the prognosis of eosinophilc myocarditis may be dominated by that of its underlying cause. For example, an underlying malignant cause for the eosinophilia may be survival-limiting.
The treatment of primary immunodeficiencies depends foremost on the nature of the abnormality. Somatic treatment of primarily genetic defects is in its infancy. Most treatment is therefore passive and palliative, and falls into two modalities: managing infections and boosting the immune system.
Reduction of exposure to pathogens may be recommended, and in many situations prophylactic antibiotics or antivirals may be advised.
In the case of humoral immune deficiency, immunoglobulin replacement therapy in the form of intravenous immunoglobulin (IVIG) or subcutaneous immunoglobulin (SCIG) may be available.
In cases of autoimmune disorders, immunosuppression therapies like corticosteroids may be prescribed.
Hypereosinophilia may occur in the setting of damage to a single specific organ due to a massive infiltration by eosinophils. This disorder is sub-classified based on the organ involved and is not considered to be a form of primary hypereosinophila, secondary hypereosinophila, or the idiopathic hypereosinophilic syndrome because: a) the eosinophils associated with the disorder have not been shown to be clonal in nature; b) a reason for the increase in blood eosinophils has not been determined; c) organ damage has not been shown to be do to eosinophils; and d) the disorder in each individual case typically is limited to the afflicted organ. Examples of organ-restricted hypereosinopilia include eosinophilic myocarditis, eosinophilic esophagitis, eosinophilic gastroenteritis, eosinophilic cystitis, eosinophilic pneumonia, eosinophilic fasciitis, eosinophilic folliculitis, eosinophilic cellulitis, eosinophilic vasculitis, and eosinophilic ulcer of the oral mucosa. Other examples of organ-restricted hepereosinophilia include those involving the heart, kidney, liver, colon, pulmonary pleurae, peritoneum, fat tissue, myometrium, and synovia.
Diagnosis of X-SCID is possible through lymphocyte cell counts, lymphocyte function tests, and genetic testing. A healthy immune system should contain large amounts of lymphocytes, but individuals with X-SCID will contain unusually small amounts of T-cells, non-functional B-cells, and some natural killer cells.
Individuals with X-SCID often have decreased lymphocyte function. This can be tested through the introduction of agents to the immune system; the reaction of the lymphocytes is then observed. In X-SCID, Antibody responses to introduced vaccines and infections are absent, and T-cell responses to mitogens, substances that stimulate lymphocyte transformation, are deficient. IgA and IgM immunoglobulins, substances that aid in fighting off infections, are very low.
The absence of a thymic shadow on chest X-rays is also indicative of X-SCID. In a normal child, a distinctive sailboat shaped shadow near the heart can be seen. The thymus gland in normal patients will gradually decrease in size because the need for the thymus gland diminishes. The decrease in the size of the thymus gland occurs because the body already has a sufficient number of developed T-cells. However, a patient with X-SCID will be born with an abnormally small thymus gland at birth. This indicates that the function of thymus gland, of forming developed T-cells, has been impaired.
Since the mutation in X-SCID is X-linked, there are genetic tests for detecting carriers in X-SCID pedigrees. One method is to look for family-specific IL2RG mutations. Finally, if none of those options are available, there is an unusual pattern of nonrandom X-chromosome inactivation on lymphocytes in carriers, thus looking for such inactivation would prove useful.
If a mother is pregnant and the family has a known history of immunodeficiency, then doctors may perform diagnostic assessment in-utero. Chorionic Villus Sampling, which involves sampling of the placental tissue using a catheter inserted through the cervix, can be performed 8 to 10 weeks into gestation. Alternatively, Amniocentesis, which entails extracting a sample of the fluid which surrounds the fetus, can be performed 15 to 20 weeks into gestation.
Early detection of X-SCID (and other types of SCID) is also made possible through detection of T-cell recombination excision circles, or TRECs. TRECs are composed of excised DNA fragments which are generated during normal splicing of T-cell surface antigen receptors and T-cell maturation. This maturation process is absent across all SCID variants, as evidenced by the low counts of T-lymphocytes. The assay is performed using dried blood from a Guthrie card, from which DNA is extracted. Quantitative PCR is then performed and the number of TRECs determined. Individuals who have the SCID phenotype will have TREC counts as low as <30, compared to approximately 1020 for a healthy infant. A low TREC count indicates that there is insufficient development of T-cells in the thymus gland. This technique can predict SCID even when lymphocyte counts are within the normal range. Newborn screening of X-SCID based on TREC count in dried blood samples has recently been introduced in several states in the United States including California, Colorado, Connecticut, Delaware, Florida, Massachusetts, Michigan, Minnesota, Mississippi, New York, Texas, and Wisconsin. In addition, pilot trials are being performed in several other states beginning in 2013.
As in humans, the sensitivity of testing methods for rodents contributes to the accuracy of diagnosis. LCMV is typically identified through serology. However, in an endemically infected colony, more practical methods include MAP (mouse antibody production) and PCR testing. Another means of diagnosis is introducing a known naïve adult mouse to the suspect rodent colony. The introduced mouse will seroconvert, allowing use of immunofluorescence antibody (IFA), MFIA or ELISA to detect antibodies.
Helminths are common causes of hypereosiophilia and eosinophilia in areas endemic to these parasites. Helminths infections causing increased blood eosinophil counts include: 1) nematodes, (i.e. "Angiostrongylus cantonensis" and Hookworm infections), ascariasis, strongyloidiasis trichinosis, visceral larva migrans, Gnathostomiasis, cysticercosis, and echinococcosis; 2) filarioidea, i.e. tropical pulmonary eosinophilia, loiasis, and onchocerciasis; and 3) flukes, i.e. shistosomiasis, fascioliasis, clonorchiasis, paragonimiasis, and fasciolopsiasis. Other infections associated with increased eosinophil blood counts include: protozoan infections, i.e. "Isospora belli" and "Dientamoeba fragilis") and sarcocystis); fungal infections (i.e. disseminated histoplasmosis, cryptococcosis especially in cases with [[central nervous system]] involvement), and coccidioides); and viral infections, i.e. Human T-lymphotropic virus 1 and HIV.