Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
An electrocardiogram (ECG/EKG) may be used to identify arrhythmias, ischemic heart disease, right and left ventricular hypertrophy, and presence of conduction delay or abnormalities (e.g. left bundle branch block). Although these findings are not specific to the diagnosis of heart failure a normal ECG virtually excludes left ventricular systolic dysfunction.
Blood tests routinely performed include electrolytes (sodium, potassium), measures of kidney function, liver function tests, thyroid function tests, a complete blood count, and often C-reactive protein if infection is suspected. An elevated B-type natriuretic peptide (BNP) is a specific test indicative of heart failure. Additionally, BNP can be used to differentiate between causes of dyspnea due to heart failure from other causes of dyspnea. If myocardial infarction is suspected, various cardiac markers may be used.
According to a meta-analysis comparing BNP and N-terminal pro-BNP (NTproBNP) in the diagnosis of heart failure, BNP is a better indicator for heart failure and left ventricular systolic dysfunction. In groups of symptomatic patients, a diagnostic odds ratio of 27 for BNP compares with a sensitivity of 85% and specificity of 84% in detecting heart failure.
When cardiomyopathy is suspected as the cause of cardiogenic shock, a biopsy of heart muscle may be needed to make a definite diagnosis.
The Swan-Ganz catheter or pulmonary artery catheter may assist in the diagnosis by providing information on the hemodynamics.
A jugular venous distension is the most sensitive clinical sign for acute decompensation.
Ultrafiltration can be used to remove fluids in people with ADHF associated with kidney failure. Studies have found that it decreases health care utilization at 90 days.
HFpEF is typically diagnosed with echocardiography. Techniques such as catheterization are invasive procedures and thus reserved for patients with co-morbid conditions or those who are suspected to have HFpEF but lack clear non-invasive findings. Catheterization does represent are more definitive diagnostic assessment as pressure and volume measurements are taken simultaneously and directly. In either technique the heart is evaluated for left ventricular diastolic function. Important parameters include, rate of isovolumic relaxation, rate of ventricular filling, and stiffness.
Frequently patients are subjected to stress echocardiography, which involves the above assessment of diastolic function during exercise. This is undertaken because perturbations in diastole are exaggerated during the increased demands of exercise. Exercise requires increased left ventricular filling and subsequent output. Typically the heart responds by increasing heart rate and relaxation time. However, in patients with HFpEF both responses are diminished due to increased ventricular stiffness. Testing during this demanding state may reveal abnormalities that are not as discernible at rest.
It is critical to diagnose CRS at an early stage in order to achieve optimal therapeutic efficacy. However, unlike markers of heart damage or stress such as troponin, creatine kinase, natriuretic peptides, reliable markers for acute kidney injury are lacking. Recently, research has found several biomarkers that can be used for early detection of acute kidney injury before serious loss of organ function may occur. Several of these biomarkers include neutrophil gelatinase-associated lipocalin (NGAL), N-acetyl-B-D-glucosaminidase (NAG), Cystatin C, and kidney injury molecule-1 (KIM-1) which have been shown to be involved in tubular damage. Other biomarkers that have been shown to be useful include BNP, IL-18, and fatty acid binding protein (FABP). However, there is great variability in the measurement of these biomarkers and their use in diagnosing CRS must be assessed.
The diagnosis of pulmonary heart disease is not easy as both lung and heart disease can produce similar symptoms. Therefore, the differential diagnosis should assess:
Among the investigations available to determine cor pulmonale are:
- Chest x-ray – right ventricular hypertrophy, right atrial dilatation, prominent pulmonary artery
- ECG – right ventricular hypertrophy, dysrhythmia, P pulmonale (characteristic peaked P wave)
- Thrombophilia screen- to detect chronic venous thromboembolism (proteins C and S, antithrombin III, homocysteine levels)
The following screening tool may be useful to patients and medical professionals in determining the need to take further action to diagnose symptoms:
Noninvasive imaging plays an important role in the diagnosis and characterisation of myocardial infarction. Tests such as chest X-rays can be used to explore and exclude alternate causes of a person's symptoms. Tests such as stress echocardiography and myocardial perfusion imaging can confirm a diagnosis when a person's history, physical examination (including cardiac examination) ECG, and cardiac biomarkers suggest the likelihood of a problem.
Echocardiography, an ultrasound scan of the heart, is able to visualize the heart, its size, shape, and any abnormal motion of the heart walls as they beat that may indicate a myocardial infarction. The flow of blood can be imaged, and contrast dyes may be given to improve image. Other scans using radioactive contrast include SPECT CT-scans using thallium, sestamibi (MIBI scans) or tetrofosmin; or a PET scan using Fludeoxyglucose or rubidium-82. These nuclear medicine scans can visualize the perfusion of heart muscle. SPECT may also be used to determine viability of tissue, and whether areas of ischemia are inducible.
Medical societies and professional guidelines recommend that the physician confirm a person is at high risk for myocardial infarction before conducting imaging tests to make a diagnosis, as such tests are unlikely to change management and result in increased costs. Patients who have a normal ECG and who are able to exercise, for example, do not merit routine imaging.
There are a number of different biomarkers used to determine the presence of cardiac muscle damage. Troponins, measured through a blood test, are considered to be the best, and are preferred because they have greater sensitivity and specificity for measuring injury to the heart muscle than other tests. A rise in troponin occurs within 2–3 hours of injury to the heart muscle, and peaks within 1–2 days. The gross value of the troponin, as well as a change over time, are useful in measuring and diagnosing or excluding myocardial infarctions, and the diagnostic accuracy of troponin testing is improving over time. One high-sensitivity cardiac troponin is able to rule out a heart attack as long as the ECG is normal.
Other tests, such as CK-MB or myoglobin, are discouraged. CK-MB is not as specific as troponins for acute myocardial injury, and may be elevated with past cardiac surgery, inflammation or electrical cardioversion; it rises within 4–8 hours and returns to normal within 2–3 days. Copeptin may be useful to rule out MI rapidly when used along with troponin.
The medical care of patients with hypertensive heart disease falls under 2 categories—
- Treatment of hypertension
- Prevention (and, if present, treatment) of heart failure or other cardiovascular disease
According to JNC 7, BP goals should be as follows :
- Less than 140/90mm Hg in patients with uncomplicated hypertension
- Less than 130/85mm Hg in patients with diabetes and those with renal disease with less than 1g/24-hour proteinuria
- Less than 125/75mm Hg in patients with renal disease and more than 1 g/24-hour proteinuria
Ischemic cardiomyopathy can be diagnosed via magnetic resonance imaging (MRI) protocol, imaging both global and regional function. Also the Look-Locker technique is used to identify diffuse fibrosis; it is therefore important to be able to determine the extent of the ischemic scar. Some argue that only left main- or proximal-left anterior descending artery disease is relevant to the diagnostic criteria for ischemic cardiomyopathy. Myocardial imaging usually demonstrates left ventricular dilation, severe ventricular dysfunction, and multiple infarctions. Signs include congestive heart failure, angina edema, weight gain and fainting, among others.
A complication that may occur in the acute setting soon after a myocardial infarction or in the weeks following is cardiogenic shock. Cardiogenic shock is defined as a hemodynamic state in which the heart cannot produce enough of a cardiac output to supply an adequate amount of oxygenated blood to the tissues of the body.
While the data on performing interventions on individuals with cardiogenic shock is sparse, trial data suggests a long-term mortality benefit in undergoing revascularization if the individual is less than 75 years old and if the onset of the acute myocardial infarction is less than 36 hours and the onset of cardiogenic shock is less than 18 hours. If the patient with cardiogenic shock is not going to be revascularized, aggressive hemodynamic support is warranted, with insertion of an intra-aortic balloon pump if not contraindicated. If diagnostic coronary angiography does not reveal a culprit blockage that is the cause of the cardiogenic shock, the prognosis is poor.
The survival of PVF largely depends on the promptness of defibrillation. The success rate of prompt defibrillation during monitoring is currently higher than 95%. It is estimated that the success rate decreases by 10% for each additional minute of delay.
After return of heart function, there has been a moderately higher risk of death in the hospital when compared to MI patients without PVF. Whether this still holds true with the recent changes in treatment strategies of earlier hospital admission and immediate angioplasty with thrombus removal is unknown. PVF does not affect the long-term prognosis.
Kidney failure is very common in patients suffering from congestive heart failure. It was shown that kidney failure complicates one-third of all admissions for heart failure, which is the leading cause of hospitalization in the United States among adults over 65 years old. These complications led to longer hospital stay, higher mortality, and greater chance for readmission. Another study found that 39% of patients in NYHA class 4 and 31% of patients in NYHA class 3 had severely impaired kidney function. Similarly, kidney failure can have deleterious effects on cardiovascular function. It was estimated that about 44% of deaths in patients with end-stage kidney failure (ESKF) are due to cardiovascular disease.
In general, the minimal evaluation of atrial fibrillation should be performed in all individuals with AF. The goal of this evaluation is to determine the general treatment regimen for the individual. If results of the general evaluation warrant it, further studies may then be performed.
Limited studies have suggested that screening for atrial fibrillation in those 65 years and older increases the number of cases of atrial fibrillation detected.
Restoring adequate blood flow to the heart muscle in people with heart failure and significant coronary artery disease is strongly associated with improved survival, some research showing up to 75% survival rates over 5 years. A stem cell study indicated that using autologous cardiac stem cells as a regenerative approach for the human heart (after a heart attack) has great potential.
American Heart Association practice guidelines indicate (ICD) implantable cardioverter-defibrillator use in those with ischemic cardiomyopathy (40 days post-MI) that are (NYHA) New York Heart Association functional class I. LVEF of >30% is often used to differentiate primary from ischemic cardiomyopathy, and a prognostic indicator. At the same time, people who undergo ventricular restoration on top of coronary artery bypass show improved postoperative ejection fraction as compared to those treated with only coronary artery bypass surgery. Severe cases are treated with heart transplantation.
Initial diagnosis can be challenging, as there are a number of differential diagnoses, including tension pneumothorax, and acute heart failure. In a trauma patient presenting with PEA (pulseless electrical activity) in the absence of hypovolemia and tension pneumothorax, the most likely diagnosis is cardiac tamponade.
Signs of classical cardiac tamponade include three signs, known as Beck's triad. Low blood pressure occurs because of decreased stroke volume, jugular-venous distension due to impaired venous return to the heart, and muffled heart sounds due to fluid buildup inside the pericardium.
Other signs of tamponade include pulsus paradoxus (a drop of at least 10 mmHg in arterial blood pressure with inspiration), and ST segment changes on the electrocardiogram, which may also show low voltage QRS complexes, as well as general signs and symptoms of shock (such as fast heart rate, shortness of breath and decreasing level of consciousness). However, some of these signs may not be present in certain cases. A fast heart rate, although expected, may be absent in people with uremia and hypothyroidism.
In addition to the diagnostic complications afforded by the wide-ranging differential diagnosis for chest pain, diagnosis can be additionally complicated by the fact that patients will often be weak or faint at presentation. For instance, a fast rate of breathing and difficulty breathing on exertion that progresses to air hunger at rest can be a key diagnostic symptom, but it may not be possible to obtain such information from patients who are unconscious or who have convulsions at presentation.
Tamponade can often be diagnosed radiographically. Echocardiography, which is the diagnostic test of choice, often demonstrates an enlarged pericardium or collapsed ventricles. A large cardiac tamponade will show as an enlarged globular-shaped heart on chest x-ray. During inspiration, the negative pressure in the thoracic cavity will cause increased pressure into the right ventricle. This increased pressure in the right ventricle will cause the interventricular septum to bulge towards the left ventricle, leading to decreased filling of the left ventricle. At the same time, right ventricle volume is markedly diminished and sometimes it can collapse.
Despite increasing incidence of HFpEF effective inroads to therapeutics have been largely unsuccessful. Currently, recommendations for treatment are directed at symptom relief and co-morbid conditions. Frequently this involves administration of diuretics to relieve complications associated with volume overload, such as leg swelling and high blood pressure.
Commonly encountered conditions that must be treated for and have independent recommendations for standard of care include atrial fibrillation, coronary artery disease, hypertension, and hyperlipidemia. There are particular factors unique to HFpEF that must be accounted for with therapy. Unfortunately, currently available randomized clinical trials addressing the therapeutic adventure for these conditions in HFpEF present conflicting or limited evidence.
Specific aspects of therapeutics should be avoided in HFpEF to prevent the deterioration of the condition. Considerations that are generalizable to heart failure include avoidance of a fast heart rate, elevations in blood pressure, development of ischemia, and atrial fibrillation. More specific to HFpEF include avoidance of preload reduction. As patients display normal ejection fraction but reduced cardiac output they are especially sensitive to changes in preloading and may rapidly display signs of output failure. This means administration of diuretics and vasodilators must be monitored carefully.
HFrEF and HFpEF represent distinct entities in terms of development and effective therapeutic management. Specifically cardiac resynchronization, administration of beta blockers and angiotensin converting enzyme inhibitors are applied to good effect in HFrEF but are largely ineffective at reducing morbidity and mortality in HFpEF. Many of these therapies are effective in reducing the extent of cardiac dilation and increasing ejection fraction in HFrEF patients. It is unsurprising they fail to effect improvement in HFpEF patients, given their un-dilated phenotype and relative normal ejection fraction. Understanding and targeting mechanisms unique to HFpEF are thus essential to the development of therapeutics.
Randomized studies on HFpEF patients have shown that exercise improves left ventricular diastolic function, the heart's ability to relax, and is associated with improved aerobic exercise capacity. The benefit patients seem to derive from exercise does not seem to be a direct cardiac effect but rather is due to changes in peripheral vasculature and skeletal muscle, which show abnormalities in HFpEF patients.
Patients should be regularly assessed to determine progression of the condition, response to interventions, and need for alteration of therapy. Ability to perform daily tasks, hemodynamic status, kidney function, electrolyte balance, and serum natriuretic peptide levels are important parameters. Behavioral management is important in these patients and it is recommended that individuals with HFpEF avoid alcohol, smoking, and high sodium intake.
For acute pericarditis to formally be diagnosed, two or more of the following criteria must be present: chest pain consistent with a diagnosis of acute pericarditis (sharp chest pain worsened by breathing in or a cough), a pericardial friction rub, a pericardial effusion, and changes on electrocardiogram (ECG) consistent with acute pericarditis.
A complete blood count may show an elevated white count and a serum C-reactive protein may be elevated. Acute pericarditis is associated with a modest increase in serum creatine kinase MB (CK-MB). and cardiac troponin I (cTnI), both of which are also markers for injury to the muscular layer of the heart. Therefore, it is imperative to also rule out acute myocardial infarction in the face of these biomarkers. The elevation of these substances may occur when inflammation of the heart's muscular layer in addition to acute pericarditis. Also, ST elevation on EKG (see below) is more common in those patients with a cTnI > 1.5 µg/L. Coronary angiography in those patients should indicate normal vascular perfusion. Troponin levels increase in 35-50% of people with pericarditis.
Electrocardiogram (ECG) changes in acute pericarditis mainly indicates inflammation of the epicardium (the layer directly surrounding the heart), since the fibrous pericardium is electrically inert. For example, in uremia, there is no inflammation in the epicardium, only fibrin deposition, and therefore the EKG in uremic pericarditis will be normal. Typical EKG changes in acute pericarditis includes
- stage 1 -- diffuse, positive, ST elevations with reciprocal ST depression in aVR and V1. Elevation of PR segment in aVR and depression of PR in other leads especially left heart V5, V6 leads indicates atrial injury.
- stage 2 -- normalization of ST and PR deviations
- stage 3 -- diffuse T wave inversions (may not be present in all patients)
- stage 4 -- EKG becomes normal OR T waves may be indefinitely inverted
The two most common clinical conditions where ECG findings may mimic pericarditis are acute myocardial infarction (AMI) and generalized early repolarization. As opposed to pericarditis, AMI usually causes localized convex ST-elevation usually associated with reciprocal ST-depression which may also be frequently accompanied by Q-waves, T-wave inversions (while ST is still elevated unlike pericarditis), arrhythmias and conduction abnormalities. In AMI, PR-depressions are rarely present. Early repolarization usually occurs in young males (age <40 years) and ECG changes are characterized by terminal R-S slurring, temporal stability of ST-deviations and J-height/ T-amplitude ratio in V5 and V6 of <25% as opposed to pericarditis where terminal R-S slurring is very uncommon and J-height/ T-amplitude ratio is ≥ 25%. Very rarely, ECG changes in hypothermia may mimic pericarditis, however differentiation can be helpful by a detailed history and presence of an Osborne wave in hypothermia.
Another important diagnostic electrocardiographic sign in acute pericarditis is the Spodick sign. It signifies to the PR-depressions in a usual (but not always) association with downsloping TP segment in patients with acute pericarditis and is present in up to 80% of the patients affected with acute pericarditis. The sign is often best visualized in lead II and lateral precordial leads. In addition, Spodick’s sign may also serve as an important distinguishing electrocardiographic tool between the acute pericarditis and acute coronary syndrome. The presence of a classical Spodick’s sign is often a giveaway to the diagnosis.
Rarely, electrical alternans may be seen, depending on the size of the effusion.
A chest x-ray is usually normal in acute pericarditis, but can reveal the presence of an enlarged heart if a pericardial effusion is present and is greater than 200 mL in volume. Conversely, patients with unexplained new onset cardiomegaly should always be worked up for acute pericarditis.
An echocardiogram is typically normal in acute pericarditis but can reveal pericardial effusion, the presence of which supports the diagnosis, although its absence does not exclude the diagnosis.