Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
           
        
This condition can be diagnosed by genetic testing. Furthermore, an echocardiogram and X-ray may help in the diagnosis.
In general, children with a small isolated nevus and a normal physical exam do not need further testing; treatment may include potential surgical removal of the nevus. If syndrome issues are suspected, neurological, ocular, and skeletal exams are important. Laboratory investigations may include serum and urine calcium and phosphate, and possibly liver and renal function tests. The choice of imaging studies depends on the suspected abnormalities and might include skeletal survey, CT scan of the head, MRI, and/or EEG.
Depending on the systems involved, an individual with Schimmelpenning syndrome may need to see an interdisciplinary team of specialists: dermatologist, neurologist, ophthalmologist, orthopedic surgeon, oral surgeon, plastic surgeon, psychologist.
The heterogeneity of the Klippel–Feil syndrome has made it difficult to outline the diagnosis as well as the prognosis classes for this disease. Because of this, it has complicated the exact explanation of the genetic cause of the syndrome.
The prognosis for most individuals with KFS is good if the disorder is treated early on and appropriately. Activities that can injure the neck should be avoided, as it may contribute to further damage. Other diseases associated with the syndrome can be fatal if not treated, or if found too late to be treatable.
Diagnosis should be based on the clinical and radiographic findings and a genetic analysis can be assessed.
The differential diagnosis of this condition consists of:
- Hypertrophic cardiomyopathy
- Beckwith-Wiedemann syndrome
- Berardinelli-Seip congenital lipodystrophy
Treatment for Klippel–Feil syndrome is symptomatic and may include surgery to relieve cervical or craniocervical instability and constriction of the spinal cord, and to correct scoliosis.
Failing non-surgical therapies, spinal surgery may provide relief. Adjacent segment disease and scoliosis are two examples of common symptoms associated with Klippel–Feil syndrome, and they may be treated surgically. The three categories treated for types of spinal cord deficiencies are massive fusion of the cervical spine (Type I), the fusion of 1 or 2 vertebrae (Type II), and the presence of thoracic and lumbar spine anomalies in association with type I or type II Klippel–Feil syndrome (Type III).
Adjacent segment disease can be addressed by performing cervical disc arthroplasty using a device such as the Bryan cervical disc prosthesis.
The option of the surgery is to maintain range of motion and attenuate the rate of adjacent segment disease advancement without fusion.
Another type of arthroplasty that is becoming an alternate choice to spinal fusion is Total Disc Replacement. Total disc replacement objective is to reduce pain or eradicate it.
Spinal fusion is commonly used to correct spinal deformities such as scoliosis. Arthrodesis is the last resort in pain relieving procedures, usually when arthroplasties fail.
The only treatment for MWS is only symptomatic, with multidisciplinary management
Figueroa and Pruzanksky classified HFM patients into three different types:
- Type I : Mild hypoplasia of the ramus , and the body of the mandible is slightly affected.
- Type II : The condyle and ramus are small, the head of the condyle is flattened , the glenoid fossa is absent , the condyle is hinged on a flat, often convex, infratemporal surface , the coronoid may be absent.
- Type III: The ramus is reduced to a thin lamina of bone or is completely absent. There is no evidence of a TMJ.
In 2010 the Ghent nosology was revised, and new diagnostic criteria superseded the previous agreement made in 1996. The seven new criteria can lead to a diagnosis:
In the absence of a family history of MFS:
1. Aortic root Z-score ≥ 2 AND ectopia lentis
2. Aortic root Z-score ≥ 2 AND an FBN1 mutation
3. Aortic root Z-score ≥ 2 AND a systemic score* > 7 points
4. Ectopia lentis AND an FBN1 mutation with known aortic pathology
In the presence of a family history of MFS (as defined above):
1. Ectopia lentis
2. Systemic score* ≥ 7
3. Aortic root Z-score ≥ 2
- Points for systemic score:
- Wrist AND thumb sign = 3 (wrist OR thumb sign = 1)
- Pectus carinatum deformity = 2 (pectus excavatum or chest asymmetry = 1)
- Hindfoot deformity = 2 (plain pes planus = 1)
- Dural ectasia = 2
- Protrusio acetabuli = 2
- pneumothorax = 2
- Reduced upper segment/lower segment ratio AND increased arm/height AND no severe scoliosis = 1
- Scoliosis or thoracolumbar kyphosis = 1
- Reduced elbow extension = 1
- Facial features (3/5) = 1 (dolichocephaly, enophthalmos, downslanting palpebral fissures, malar hypoplasia, retrognathia)
- Skin striae (stretch marks) = 1
- Myopia > 3 diopters = 1
- Mitral valve prolapse 1⁄4 1
The thumb sign (Steinberg's sign) is elicited by asking the patient to flex the thumb as far as possible and then close the fingers over it. A positive thumb sign is where the entire distal phalanx is visible beyond the ulnar border of the hand, caused by a combination of hypermobility of the thumb as well as a thumb which is longer than usual.
The wrist sign (Walker's sign) is elicited by asking the patient to curl the thumb and fingers of one hand around the other wrist. A positive wrist sign is where the little finger and the thumb overlap, caused by a combination of thin wrists and long fingers.
During pregnancy, even in the absence of preconception cardiovascular abnormality, women with Marfan syndrome are at significant risk of aortic dissection, which is often fatal even when rapidly treated. Women with Marfan syndrome, then, should receive a thorough assessment prior to conception, and echocardiography should be performed every six to 10 weeks during pregnancy, to assess the aortic root diameter. For most women, safe vaginal delivery is possible.
Marfan syndrome is expressed dominantly. This means a child with one parent a bearer of the gene has a 50% probability of getting the syndrome. In 1996, the first preimplantation genetic testing (PGT) therapy for Marfan was conducted; in essence PGT means conducting a genetic test on early-stage IVF embryo cells and discarding those embryos affected by the Marfan mutation.
There have been 30 cases of Marden-Walker Syndrome reported since 1966. The first case of this was in 1966 a female infant was diagnosed with blepharophimosis, joint contractures, arachnodactyly and growth development delay. She ended up passing at 3 months due to pneumonia.
It is possible to clinically detect Alström syndrome in infancy, but more frequently, it is detected much later, as doctors tend to detect symptoms as separate problems. Currently, Alström syndrome is often diagnosed clinically, since genetic testing is costly and only available on a limited basis.
A physical examination would be needed to properly diagnose the patient. Certain physical characteristics can determine if the patient has some type of genetic disorder. Usually, a geneticist would perform the physical examination by measuring the distance around the head, distance between the eyes, and the length of arms and legs. In addition, examinations for the nervous system or the eyes may be performed. Various imaging studies like computerized tomography scans (CT), Magnetic Resonance Imaging (MRI), or X-rays are used to see the structures within the body.
Family and personal medical history are required. Information about the health of an individual is crucial because it provides traces to a genetic diagnosis.
Laboratory tests, particularly genetic testing, are performed to diagnose genetic disorders. Some of the types of genetic testing are molecular, biochemical, and chromosomal. Other laboratory tests performed may measure levels of certain substances in urine and blood that can also help suggest a diagnosis.
Prevention for Alström Syndrome is considered to be harder compared to other diseases/syndromes because it is an inherited condition. However, there are other options that are available for parents with a family history of Alström Syndrome. Genetic testing and counseling are available where individuals are able to meet with a genetic counselor to discuss risks of having the children with the disease. The genetic counselor may also help determine whether individuals carry the defective ALSM1 gene before the individuals conceive a child. Some of the tests the genetic counselors perform include chorionic villus sampling (CVS), Preimplantation genetic diagnosis (PGD), and amniocentesis. With PGD, the embryos are tested for the ALSM1 gene and only the embryos that are not affected may be chosen for implantation via in vitro fertilization.
Treatment for NPS varies depending on the symptoms observed.
- Perform screening for renal disease and glaucoma, surgery, intensive physiotherapy, or genetic counseling.
- ACE inhibitors are taken to treat proteinuria and hypertension in NPS patients.
- Dialysis and renal transplant.
- Physical therapy, bracing and analgesics for joint pain.
- Other surgery treatments such as patella realignment, joint replacement, and the cutting away of the head of radius.
At present, treatment for proximal 18q- is symptomatic, meaning that the focus is on treating the signs and symptoms of the condition as they arise.
Treatment is usually confined to such surgical intervention as may be necessary to help the child to develop e.g. jaw distraction/bone grafts, ocular dermoid debulking (see below), repairing cleft palate/lip, repairing heart malformations or spinal surgery. Some patients with Goldenhar syndrome will require assistance as they grow by means of hearing aids or glasses.
Stem cell grafting (womb tissue grafting) has been successfully used to "reprogram" eye dermoids, effectively halting the regrowth of eye dermoids.
These tissues that grow on the eye are "mis-programmed" cells (sometimes tooth or nail cells instead of eye cells).
Depending upon the treatment required, it is sometimes most appropriate to wait until later in life for a surgical remedy – the childhood growth of the face may highlight or increase the symptoms. When surgery is required, particularly when there is a severe disfiguration of the jaw, it is common to use a rib graft to help correct the shape.
According to literature, HFM patients can be treated with various treatment options such functional therapy with an appliance, distraction osteogenesis, or costochondral graft. The treatment is based on the type of severity for these patients. According to Pruzanksky's classification, if the patient has moderate to severe symptoms, then surgery is preferred. If patient has mild symptoms, then a functional appliance is generally used.
Patients can also benefit from a Bone Anchored Hearing Aid (BAHA).
X-Ray
Bubbly lytic lesion / Ground glass
Imaging tests. Computerized tomography or magnetic resonance imaging scans may be used to determine how extensively your bones are affected.
Bone scan. This test uses radioactive tracers, which are injected into your bloodstream. The damaged parts of your bones take up more of the tracers, which show up more brightly on the scan.
Biopsy. This test uses a hollow needle to remove a small piece of the affected bone for laboratory analysis.
The treatment for Morquio syndrome consists of prenatal identification and of enzyme replacement therapy. On 12 February 2014, the US Food and Drug Administration approved the drug elosulfase alfa (Vimizim) for treating the disease.
Nager syndrome is thought to be caused by haploinsufficiency of the spliceosomal factor SF3B4.
Currently, research is focusing on identifying the role of the genes on 18q in causing the signs and symptoms associated with proximal deletions of 18q.
Till date about 18 cases of Spondylocostal dysostosis have been reported in literature.
Nager acrofacial dysostosis is a genetic congenital anomaly syndrome. Nager syndrome displays several or all of the following characteristics: underdevelopment of the cheek and jaw area, down-sloping of the opening of the eyes, lack or absence of the lower eyelashes, kidney or stomach reflux, hammer toes, shortened soft palate, lack of development of the internal and external ear, possible cleft palate, underdevelopment or absence of the thumb, hearing loss (see hearing loss with craniofacial syndromes) and shortened forearms, as well as poor movement in the elbow, and may be characterized by accessory tragi. Occasionally, affected individuals develop vertebral anomalies such as scoliosis. The inheritance pattern is said to be autosomal but there are arguments as to whether it is autosomal dominant or autosomal recessive. Most cases tend to be sporadic. Nager syndrome is also linked to five other similar syndromes: Miller syndrome, Treacher Collins, Pierre Robin, Genee-Wiedemann, and Franceschetti-Zwahlen-Klein.
Hemihypertrophy, now more commonly referred to as hemihyperplasia in the medical literature, is a condition in which one side of the body or a part of one side of the body is larger than the other to an extent considered greater than the normal variation. As it is difficult to establish a set clinical criteria for diagnosis of hemihyperplasia, the dictum is often used that the clinician should be able to see the asymmetry "from the end of the bed".
Hemihyperplasia is a congenital overgrowth disorder and the asymmetry can range from mild to severe. It is important to establish a diagnosis because hemihyperplasia is associated with an increased risk for embryonal tumors, mainly Wilms tumor and hepatoblastoma. Due to the heightened tumor risk, there is a tumor screening protocol that is recommended for all children with isolated hemihyperplasia and Beckwith-Wiedemann Syndrome. Some of the other syndromes associated with hemihyperplasia may also follow this tumor surveillance protocol. The recommended tumor surveillance protocol is:
1. Any child with suspected isolated hemihyperplasia should be referred to a clinical geneticist for evaluation.
2. Abdominal ultrasound every 3 months until 7 years
3. Serum alpha fetoprotein measurement every 3 months until 4 years
4. Daily caretaker abdominal examination at the discretion of the provider/parent
In some cases, children with hemihyperplasia may have different leg lengths. There are two main surgical options for the treatment of uneven leg lengths- shortening and lengthening. Epiphysiodesis, which involves removing part of the growth plate of the longer leg, allowing the shorter leg to "catch up", may be performed on patients still able to grow. Bone resection is performed on patients who have no growth left and involves removing part of the bone. Leg lengthening procedures are more painful, involving the insertion of pins to be turned, moving parts of the bone apart (Ilizarov's Method). This process is reserved mainly for patients with a discrepancy greater than 4 cm, although some leg lengthening procedures are now done cosmetically. Non-surgical options include attachment of a lift to the shoe, allowing the patient to walk normally.
Children with hemihypertrophy may also develop scoliosis, a curvature of the spine.
Hemifacial hyperplasia is believed to be a minor form of hemihypertrophy.
Prevalence ranges from 1 in 3500 to 5600 live births. Male-female ratio is found to be 3:2.