Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
          
        
Although GH can be readily measured in a blood sample, testing for GH deficiency is constrained by the fact that levels are nearly undetectable for most of the day. This makes simple measurement of GH in a single blood sample useless for detecting deficiency. Physicians therefore use a combination of indirect and direct criteria in assessing GHD, including:
- Auxologic criteria (defined by body measurements)
- Indirect hormonal criteria (IGF levels from a single blood sample)
- Direct hormonal criteria (measurement of GH in multiple blood samples to determine secretory patterns or responses to provocative testing), in particular:
- Subnormal frequency and amplitude of GH secretory peaks when sampled over several hours
- Subnormal GH secretion in response to at least two provocative stimuli
- Increased IGF1 levels after a few days of GH treatment
- Response to GH treatment
- Corroborative evidence of pituitary dysfunction
"Provocative tests" involve giving a dose of an agent that will normally provoke a pituitary to release a burst of growth hormone. An intravenous line is established, the agent is given, and small amounts of blood are drawn at 15 minute intervals over the next hour to determine if a rise of GH was provoked. Agents which have been used clinically to stimulate and assess GH secretion are arginine, levodopa, clonidine, epinephrine and propranolol, glucagon and insulin. An insulin tolerance test has been shown to be reproducible, age-independent, and able to distinguish between GHD and normal adults, and so is the test of choice.
Severe GH deficiency in childhood additionally has the following measurable characteristics:
- Proportional stature well below that expected for family heights, although this characteristic may not be present in the case of familial-linked GH deficiency
- Below-normal velocity of growth
- Delayed physical maturation
- Delayed bone age
- Low levels of IGF1, IGF2, IGF binding protein 3
- Increased growth velocity after a few months of GH treatment
In childhood and adulthood, the diagnosing doctor will look for these features accompanied by corroboratory evidence of hypopituitarism such as deficiency of other pituitary hormones, a structurally abnormal pituitary, or a history of damage to the pituitary. This would confirm the diagnosis; in the absence of pituitary pathology, further testing would be required.
Treatments focuses on symptoms, with genetic counseling recommended.
Evaluation of growth hormone hyper-secretion cannot be excluded with a single normal GH level due to diurnal variation. However, a random blood sample showing markedly elevated GH is adequate for diagnosis of GH hyper-secretion. Additionally, a high-normal GH level that fails to suppress with administration of glucose is also sufficient for a diagnosis of GH hyper-secretion.
Insulin-like Growth Factor-1 (IGF-1) is an excellent test for evaluation of GH hyper-secretion. It does not undergo diurnal variation and will thus be consistently elevated in GH hyper-secretion and therefore patients with gigantism. A single normal IGF-1 value will reliably exclude GH hyper-secretion.
GH deficiency is treated by replacing GH with daily injections under the skin or into muscle. Until 1985, growth hormone for treatment was obtained by extraction from human pituitary glands collected at autopsy. Since 1985, recombinant human growth hormone (rHGH) is a recombinant form of human GH produced by genetically engineered bacteria, manufactured by recombinant DNA technology. In both children and adults, costs of treatment in terms of money, effort, and the impact on day-to-day life, are substantial.
People with Laron syndrome have strikingly low rates of cancer and diabetes, although they appear to be at increased risk of accidental death due to their stature.
The decision to treat is based on a belief that the child will be disabled by being extremely short as an adult, so that the risks of treatment (including sudden death) will outweigh the risks of not treating the symptom of short stature. Although short children commonly report being teased about their height, most adults who are very short are not physically or psychologically disabled by their height. However, there is some evidence to suggest that there is an inverse linear relationship with height and with risk of suicide.
Treatment is expensive and requires many years of injections with human growth hormones. The result depends on the cause, but is typically an increase in final height of about taller than predicted. Thus, treatment takes a child who is expected to be much shorter than a typical adult and produces an adult who is still obviously shorter than average. For example, several years of successful treatment in a girl who is predicted to be as an adult may result in her being instead.
Increasing final height in children with short stature may be beneficial and could enhance health-related quality of life outcomes, barring troublesome side effects and excessive cost of treatments.
Administration of GH has no effect on IGF-1 production, therefore treatment is mainly by biosynthetic IGF-1. IGF-1 must be taken before puberty to be effective.
The drug product Increlex (mecasermin), developed by the company Tercica, now Genentech, was approved by the US Food and Drug Administration in August 2005 for replacing IGF-1 in patients who are deficient.
IPLEX (Mecasermin rinfabate) is composed of recombinant human IGF-1 (rhIGF-1) and its binding protein IGFBP-3. It was approved by the U.S. Food and Drug Administration (FDA) in 2005 for treatment of primary IGF-1 deficiency or GH gene deletion. Side effects from IPLEX are hypoglycemia. IPLEX's manufacturing company, Insmed, after selling its protein production facility, can no longer develop proteins, thus can no longer manufacture IPLEX as of a statement released in July 2009.
The cost of treatment depends on the amount of growth hormone given, which in turn depends on the child's weight and age. One year's worth of drugs normally costs about US $20,000 for a small child and over $50,000 for a teenager. These drugs are normally taken for five or more years.
The preferable way to diagnose the presence of this syndrome would be to use the help of clinical tests and medical reports after the tests and examinations. Now being aware of the subject that HAIR-AN syndrome is caused by genetic, environmental factors and also the hyperandogenism, insulin resistance and acanthosis nigricans, some of the way we could diagnosis this syndrome is by looking for signs in the body for symptoms leading to relate to those key contributors discussed above.
According to studies HAIR-AN is to be found in 1% to 3% women possessing hyperandrogenism. It is an established concept in physiopathology that the androgen in the female body is produced by the stromal ovarian cells, when stimulated by the LH and HCG. The observed activity of these cells was elevated by insulin, and later was found to be used as a determining element to find how severe the hirsutism was. Physicians must look for obesity, as it is also a diagnostic factor in many possible cases.
Acanthosis nigricans should be distinguished from the casal collar appearing in pellagra.
It was characterized in 1952 by Fuller Albright as "pseudo-pseudohypoparathyroidism" (with hyphen).
Finding a specific genetic cause for gigantism has proven to be difficult. Gigantism is the primary example of growth hormone hyper-secretion disorders, a group of illnesses that are not yet deeply understood.
Some common mutations (errors in DNA) have been associated with gigantism. Pediatric gigantism patients have shown to have duplications of genes on a specific chromosome, Xq26. Typically, these patients also experienced an onset of typical gigantism symptoms before reaching the age of 5. This indicates a possible linkage between gene duplications and the gigantism.
Additionally, DNA mutations in the aryl hydrocarbon receptor interacting protein (AIP) gene are common in gigantism patients. They have been found to be present in about 29 percent of patients with gigantism. AIP is labeled as a tumor suppressor gene and a pituitary adenoma disposition gene.
Mutations in AIP sequencing can have deleterious effects by inducing the development of pituitary adenomas which in turn can cause gigantism.
Two specific mutations in the AIP gene have been identified as possible causes of pituitary adenomas. These mutations also have the ability to cause adenoma growth to occur early in life. This is typical in gigantism.
Additionally, a large variety of other known genetic disorders have been found to influence the development of gigantism such as multiple endocrine neoplasia type 1 and 4, McCune-Albright syndrome, Carney complex, familial isolated pituitary adenoma, X-linked acrogigantism (X-LAG).
Although various gene mutations have been associated with gigantism, over 50 percent of cases cannot be linked to genetic causes, showing the complex nature of the disorder.
Acanthosis nigricans is typically diagnosed clinically. A skin biopsy may be needed in unusual cases. If no clear cause is obvious, it may be necessary to search for one. Blood tests, an endoscopy, or X-rays may be required to eliminate the possibility of diabetes or cancer as the cause.
On biopsy, hyperkeratosis, epidermal folding, leukocyte infltration, and melanocyte proliferation may be seen.
A complete physical evaluation should be done prior to initiating more extensive studies, the examiner should differentiate between widespread body hair increase and male pattern virilization. One method of evaluating hirsutism is the Ferriman-Gallwey Score which gives a score based on the amount and location of hair growth on a woman. After the physical examination, laboratory studies and imaging studies can be done to rule out further causes.
Diagnosis of patients with even mild hirsutism should include assessment of ovulation and ovarian ultrasound, due to the high prevalence of polycystic ovary syndrome (PCOS), as well as 17α-hydroxyprogesterone (because of the possibility of finding nonclassic 21-hydroxylase deficiency). Many women present with an elevated serum dehydroepiandrosterone sulfate (DHEA-S) level. Levels greater than 700 μg/dL are indicative of adrenal gland dysfunction, particularly congenital adrenal hyperplasia due to 21-hydroxylase deficiency. However, PCOS and idiopathic hirsutism make up 90% of cases.
Other blood value that may be evaluated in the workup of hirsutism include:
- androgens; androstenedione, testosterone
- thyroid function panel; thyroid-stimulating hormone (TSH), triiodothyronine (T3), thyroxine (T4)
- prolactin
If no underlying cause can be identified, the condition is considered idiopathic.
Due to the strong link between PPID and insulin resistance, testing is recommended for all horses suspected or confirmed to be suffering from PPID. There are two tests commonly used for insulin resistance: the oral sugar test and fasting insulin blood concentration.
The fasting insulin concentration involves giving a horse a single flake of hay at 10 pm the night before testing, with blood being drawn the following morning. Both insulin and glucose blood levels are measured. Hyperinsulinemia suggests insulin resistance, but normal or low fasting insulin does not rule out PPID. This test is easy to perform, but is less sensitive than the oral sugar test. It is best used in cases where risks of laminitis make the oral sugar test potentially unsafe.
The oral sugar test also requires giving the horse only a single flake of hay at 10pm the night before the test. The following morning, karo corn syrup is given orally, and glucose and insulin levels are measured at 60 and 90 minutes after administration. Normal or excessively high insulin levels are diagnostic. However, equivocal test results require retesting at a later date, or performing a different test. A similar test is available outside the US, in areas where corn-syrup products are less readily available, where horses are given a morning meal of chaff with dextrose powder, and blood insulin levels are measured 2 hours later.
Many people with MDP syndrome are high achievers intellectually following careers in law, medicine and computing. A crucial point is that they do not have progeria and there is no evidence of accelerated intellectual decline with age in these patients. Equally life expectancy has not been shown to be reduced. Patients of 65 have been described in the literature and none of the patients are known to have malignancy. Therefore, there are many crucial differences with progeria and the name of progeroid in the title is confusing as this really refers to the lack of fat in the face and taut skin and not any intellectual or other age associated features.
The dexamethasone suppression test involves administering dexamethasone, a synthetic glucocorticoid, to the horse, and measuring its serum cortisol levels before and 19–24 hours after injection. In a normal horse, dexamethasone administration results in negative feedback to the pituitary, resulting in decreased ACTH production from the pars distalis and, therefore, decreased synthesis of cortisol at the level of the adrenal gland. A horse with PPID, which has an overactive pars intermedia not regulated by glucocorticoid levels, does not suppress ACTH production and, therefore, cortisol levels remain high. False negatives can occur in early disease. Additionally, dexamethasone administration may increase the risk of laminitis in horses already prone to the disease. For these reasons, the dexamethasone suppression test is currently not recommended for PPID testing.
The term pseudopseudohypoparathyroidism is used to describe a condition where the individual has the phenotypic appearance of pseudohypoparathyroidism type 1a, but is biochemically normal.
Deafness is a feature of MDP syndrome as a result of the nerves not working well and people often have difficulty getting hearing aids because of the small size of their ears. Digital hearing aids can be helpful and audiometry follow up will be needed.
Pseudohypoparathyroidism is a condition associated primarily with resistance to the parathyroid hormone. Those with the condition have a low serum calcium and high phosphate, but the parathyroid hormone level (PTH) is appropriately high (due to the low level of calcium in the blood). Its pathogenesis has been linked to dysfunctional G Proteins (in particular, Gs alpha subunit). The condition is extremely rare, with an estimated overall prevalence of 7.2/1,000,000 or approximately 1/140000.
The gold standard of diagnosis is the parathyroid immunoassay. Once an elevated Parathyroid hormone has been confirmed, goal of diagnosis is to determine whether the hyperparathyroidism is primary or secondary in origin by obtaining a serum calcium level:
Tertiary hyperparathyroidism has a high PTH and a high serum calcium. It is differentiated from primary hyperparathyroidism by a history of chronic kidney failure and secondary hyperparathyroidism.
A technetium sestamibi scan is a procedure in nuclear medicine that identifies hyperparathyroidism (or parathyroid adenoma). It is used by surgeons to locate ectopic parathyroid adenomas, most commonly found in the anterior mediastinum.
HAIR-AN syndrome as discussed earlier is caused by both gentic and environmental factors. It is found out that women affected by this syndrome or PCOS (polycystic ovary syndrome) are generally accompanied by obesity. Weight loss is most suggested way to combat this syndrome and is helpful for reducing insulin resistance of the body. It is also a good way to have a control on diet. This might help the body to refunction properly and show some resistance to HAIR-AN syndrome. "Suppression of gonadotropin with estrogen-progesterone oral contraceptives" or can say as reducing hyperandrogenism by the use of estoprogestatif can reduce production of androgen by ovaries by cutting down the LH (leutinizing hormone) level in body. Even their sex hormone binding to globulin increase is also responsible for decreasing body's bio-availability of testosterone. There are also few pills of new progestins, such as desogestrel and norgestimate. This pills appear to have fewer androgenic side effects and may be safer to use in persons with abnormal lipid levels or hirsutism. Some antiandrogenic agents can be also used alone or combining it with other oral pills.
"Spironolactone inhibit the actions of testosterone by binding to its receptors." The standard dose for its use is considered to be 50 to 100 mg twice a day. This might lead to irregular menstrual bleeding, which can be improved by oral contraceptives. Flutamide, an another antiandorgen that is used to treat HAIR-AN syndrome, but it has risk of hepatotoxicity. Finasteride is a 5α-reductase inhibitor which can reduces the conversion of testosterone to dihydrotestosterone. It is useful in the treatment of hirsutism with a dosages as low as 5 mg per day.
Insulin-resistant patients can also be treated with metformin which has shown promising results to reduce the insulin resistivity. Metformin improves peripheral tissue sensitivity to insulin but inhibits hepatic glucose formation. The drug reduces the levels of circulating insulin and androgens. Women have shown improved reproductive functioning after the use of metformin.
If acromegaly is suspected, medical imaging and medical laboratory investigations are generally used together to confirm or rule out the presence of this condition.
IGF1 provides the most sensitive lab test for the diagnosis of acromegaly, and a GH suppression test following an oral glucose load, which is a very specific lab test, will confirm the diagnosis following a positive screening test for IGF1. A single value of the GH is not useful in view of its pulsatality (levels in the blood vary greatly even in healthy individuals). GH levels taken 2 hours after a 75- or 100-gram glucose tolerance test are helpful in the diagnosis: GH levels are suppressed below 1 μg/l in normal people, and levels higher than this cutoff are confirmatory of acromegaly.
Other pituitary hormones must be assessed to address the secretory effects of the tumor, as well as the mass effect of the tumor on the normal pituitary gland. They include thyroid stimulating hormone (TSH), gonadotropic hormones (FSH, LH), adrenocorticotropic hormone, and prolactin.
An MRI of the brain focusing on the sella turcica after gadolinium administration allows for clear delineation of the pituitary and the hypothalamus and the location of the tumor. A number of other overgrowth syndromes can result in similar problems.
The diagnosis of primary hyperparathyroidism is made by blood tests.
Serum calcium levels are elevated, and the parathyroid hormone level is abnormally high compared with an expected low level in response to the high calcium. A relatively elevated parathyroid hormone has been estimated to have a sensitivity of 60%-80% and a specificity of approximately 90% for primary hyperparathyroidism.
A more powerful variant of comparing the balance between calcium and parathyroid hormone is to perform a 3-hour calcium infusion. After infusion, a parathyroid hormone level above a cutoff of 14 ng/l has a sensitivity of 100% and a specificity of 93% in detecting primary hyperparathyroidism, with a confidence interval of 80% to 100%.
Urinary cAMP is occasionally measured; this is generally elevated.
Biochemical confirmation of primary hyperparathyroidism is following by investigations to localize the culprit lesion. Primary hyperparathyroidism is most commonly due to solitary parathyroid adenoma. Less commonly it may be due to double parathyroid adenomas or parathyroid hyperplasia. Tc99 sestamibi scan of head, neck and upper thorax is the most commonly used test for localizing parathyroid adenomas having a sensitivity and specificity of 70-80%. Sensitivity falls down to 30% in case of double/multiple parathyroid adenomas or in case of parathyroid hyperplasia. Ultrasonography is also a useful test in localizing suspicious parathyroid lesions.