Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Genetic testing may be available for mutations in the FGDY1 gene. Genetic counseling is indicated for individuals or families who may carry this condition, as there are overlapping features with fetal alcohol syndrome.
Other examinations or tests can help with diagnosis. These can include:
detailed family history
- conducting a detailed physical examination to document morphological features
- testing for genetic defect in FGDY1
- x-rays can identify skeletal abnormalities
- echo cardiogram can screen for heart abnormalities
- CT scan of the brain for cystic development
- X-ray of the teeth
- Ultrasound of abdomen to identify undescended testis
Since Duane-radial ray syndrome is a genetic disorder, a genetic test would be performed. One test that can be used is the SALL4 sequence analysis that is used to detect if SALL4 is present. If there is no pathogenic variant observed, a deletion/duplication analysis can be ordered following the SALL4 sequence analysis. As an alternative, another genetic test called a multi-gene panel can be ordered to detect SALL4 and any other genes of interest. The methods used for this panel vary depending on the laboratory.
FHS shares some common features with Rubinstein–Taybi (due to overlapping effects of mutations on SRCAP), however cranial and hand anomalies are distinctive: broad thumbs, narrow palate, and microcephaly are absent in Floating-Harbor Syndrome. One child in the UK has a diagnosis of microcephaly alongside Floating–Harbor syndrome.
MRI imaging can be used to detect whether the abducens nerve is present.
Until recently, doctors have diagnosed patients with FHS based on clinical observations and how well they fit the disease description, usually occurring in early childhood. Molecular genetic testing is also used now to test for genetic mutations. By performing a sequence analysis test of select exons, mutations can be detected in exon 34 of the SRCAP gene. This mutation has been observed in 19 patients to date.
In most cases, if the patient shows classic facial features of FHS, the molecular testing will show a mutation on the SRCAP gene.
Diagnosis is based on the distinctive cry and accompanying physical problems. These common symptoms are quite easily observed in infants. Affected children are typically diagnosed by a doctor or nurse at birth. Genetic counseling and genetic testing may be offered to families with individuals who have cri du chat syndrome. Prenatally the deletion of the cri du chat related region in the p arm of chromosome 5 can be detected from amniotic fluid or chorionic villi samples with BACs-on-Beads technology. G-banded karyotype of a carrier is also useful. Children may be treated by speech, physical and occupational therapists. Heart abnormalities often require surgical correction.
Prognoses for 3C syndrome vary widely based on the specific constellation of symptoms seen in an individual. Typically, the gravity of the prognosis correlates with the severity of the cardiac abnormalities. For children with less severe cardiac abnormalities, the developmental prognosis depends on the cerebellar abnormalities that are present. Severe cerebellar hypoplasia is associated with growth and speech delays, as well as hypotonia and general growth deficiencies.
Diagnosis is based on clinical findings.
'Clinical findings'
- Profound congenital sensorineural deafness is present
- CT scan or MRI of the inner ear shows no recognizable structure in the inner ear.
- As michel's aplasia is associated with LAMM syndrome there will be Microtia and microdontia present(small sized teeth).
Molecular genetic Testing
1. "FGF3" is the only gene, whose mutation can cause congenital deafness with Michel's aplasia, microdontia and microtia
Carrier testing for at-risk relatives requires identification of mutations which are responsible for occurrence of disease in the family.
MRI will help with the diagnosis of structural abnormality of the brain. Genetic testing may also be pursued.
Some people may have some mental slowness, but children with this condition often have good social skills. Some males may have problems with fertility.
The outcome of this disease is dependent on the severity of the cardiac defects. Approximately 1 in 3 children with this diagnosis require shunting for the hydrocephaly that is often a consequence. Some children require extra assistance or therapy for delayed psychomotor and speech development, including hypotonia.
The diagnosis CFND is established only after the presence of a mutation in the EFNB1 gene has been determined. Physical manifestations are not necessarily part of the diagnostic criteria, but can help guide in the right direction. This is due to the large heterogeneity between patients regarding phenotypic expression.
20% of the patients that present with CFND-like characteristics do not display a mutation in the EFNB1 gene. The group of patients diagnosed with CFND is thus often overestimated. However, it is important to distinguish this population from CFND for research purposes. On the other hand, especially in males, it is possible that someone is a carrier of the EFNB1 gene mutation yet does not present with any physical manifestations. Screening for the presence of an EFNB1 mutation is thus the most reliable method to establish the diagnosis CFND.
Genetic counseling or prenatal screening may be advised if there is a reason to suspect the presence of an EFNB1 gene mutation. Prenatal screening may be done by performing an ultrasound, where can be searched specifically for hypertelorism or a bifid nasal tip. However, this is quite difficult as facial involvement may not be obvious at such an early age, especially in cases with mild phenotypic presentation. The most definitive way to prove the presence of CFND is done by genetic testing, through amniocentesis and chorionic villus sampling. This however carries a greater risk of premature termination of the pregnancy.
In 1989, diagnostic criteria was created for the diagnosing of Winchester syndrome. The typical diagnosis criteria begin with skeletal radiological test results and two of the defining symptoms, such as short stature, coarse facial features, hyperpigmentation, or excessive hair growth. The typical tests that are performed are x-ray and magnetic resonance imaging. It appears that Winchester syndrome is more common in women than men. Winchester syndrome is very rare. There have only been a few individuals worldwide who were reported to have this disorder.
Early intervention is considered important. For infants, breathing and feeding difficulties, are monitored. Therapies used are "symptomatic and supportive."
The diagnosis of PPS has been made in several ethnic groups, including Caucasian, Japanese, and sub-Saharan African. Males and females are equally likely to suffer from the syndrome. Since the disorder is very rare, its incidence rate is difficult to estimate, but is less than 1 in 10,000.
Figueroa and Pruzanksky classified HFM patients into three different types:
- Type I : Mild hypoplasia of the ramus , and the body of the mandible is slightly affected.
- Type II : The condyle and ramus are small, the head of the condyle is flattened , the glenoid fossa is absent , the condyle is hinged on a flat, often convex, infratemporal surface , the coronoid may be absent.
- Type III: The ramus is reduced to a thin lamina of bone or is completely absent. There is no evidence of a TMJ.
Zimmermann–Laband syndrome (ZLS), also known as Laband–Zimmermann syndrome, and Laband's syndrome, is an extremely rare autosomal dominant congenital disorder.
Symptoms include gingival fibromatosis, associated with hypoplasia of the distal phalanges, nail dysplasia, joint hypermobility, and sometimes hepatosplenomegaly. The nose and pinnae are usually large and poorly developed, which gives the individuals with the syndrome abnormal facial characteristics. Mental retardation may also occur. Both males and females are equally affected. Gingival fibromatosis is usually present at birth or appears short after. The term Zimmermann–Laband was coined by Carl Jacob Witkop in 1971.
Craniometaphyseal dysplasia is diagnosed based on clinical and radiographic findings that include hyperostosis. Some things such as cranial base sclerosis and nasal sinuses obstruction can be seen during the beginning of the child's life. In radiographic findings the most common thing that will be found is the narrowing of foramen magnum and the widening of long bones. Once spotted treatment is soon suggested to prevent further compression of the foramen magnum and disabling conditions.
Craniofrontonasal dysplasia is a very rare genetic condition. As such there is little information and no consensus in the published literature regarding the epidemiological statistics.
The incidence values that were reported ranged from 1:100,000 to 1:120,000.
YVS has been described relatively recently in the 1980s and since then less than 15 cases have been reported around the world. Many of the infants did not survive beyond one year of age.
Depending upon the treatment required, it is sometimes most appropriate to wait until later in life for a surgical remedy – the childhood growth of the face may highlight or increase the symptoms. When surgery is required, particularly when there is a severe disfiguration of the jaw, it is common to use a rib graft to help correct the shape.
According to literature, HFM patients can be treated with various treatment options such functional therapy with an appliance, distraction osteogenesis, or costochondral graft. The treatment is based on the type of severity for these patients. According to Pruzanksky's classification, if the patient has moderate to severe symptoms, then surgery is preferred. If patient has mild symptoms, then a functional appliance is generally used.
Patients can also benefit from a Bone Anchored Hearing Aid (BAHA).
The only treatment for this disorder is surgery to reduce the compression of cranial nerves and spinal cord. However, bone regrowth is common since the surgical procedure can be technically difficult. Genetic counseling is offered to the families of the people with this disorder.
Rudiger syndrome is a congenital disorder characterized by the association of severe growth retardation with abnormalities of the extremities, urogenital abnormalities and facial abnormalities. It has been described in a family where an affected brother and sister died as infants. Both autosomal recessive and autosomal dominant inheritance have been suggested with the disorder.
The features ectrodactyly, ectodermal dysplasia and cleft palate have been described with Rudiger syndrome, giving it the rarely used designation "EEC syndrome". However, this is not to be confused with the formal EEC syndrome associated with chromosome 7.
It was characterized in 1971.
There is no known cure for Winchester syndrome; however, there are many therapies that can aid in the treatment of symptoms. Such treatments can include medications: anti-inflammatories, muscle relaxants, and antibiotics. Many individuals will require physical therapy to promote movement and use of the limbs affected by the syndrome. Genetic counseling is typically prescribed for families to help aid in the understanding of the disease. There are a few clinical trials available to participate in. The prognosis for patients diagnosed with Winchester syndrome is positive. It has been reported that several affected individuals have lived to middle age; however,the disease is progressive and mobility will become limited towards the end of life. Eventually, the contractures will remain even with medical intervention, such as surgery.