Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Diagnosis of clubfoot deformity is by physical examination. Typically, a newborn is examined shortly after delivery with a head to toe assessment. Examination of the lower extremity and foot reveals the deformity, which may affect one or both feet. Examination of the foot shows four components of deformity.
- First, there is a higher arch on the inside of the foot. This component of the deformity can occur without the other aspects of clubfoot deformity. In isolation, this aspect of the deformity is called cavus deformity.
- Second, the forefoot is curved inward or medially (toward the big toe). This component of the deformity can occur without the other aspects of clubfoot deformity. In isolation, this aspect of the deformity is called metatarsus adductus.
- Third, the heel is turned inward. This is a natural motion of the heel and subtalar joint, typically referred to as inversion. In clubfoot deformity, the turning in (inversion) of the heel is fixed (not passively correctable) and considered a varus deformity.
- Fourth, and finally, the ankle is pointed downward. This is a natural motion of the ankle referred to as plantar flexion. In clubfoot deformity, this position is fixed (not correctable) and is referred to as equinus deformity.
A foot that shows all four components are diagnosed as having clubfoot deformity. These four components of a clubfoot deformity can be remembered with the acronym CAVE (cavus, forefoot adductus, varus, and equinus).
The severity of the deformity can also be assessed on physical exam, but is subjective to quantify. One way to assess severity is based on the stiffness of the deformity or how much it can be corrected with manual manipulation of the foot to bring it into a corrected position. Other factors used to assess severity include the presence of skin creases in the arch and at the heel and poor muscle consistency.
In some cases, it may be possible to detect the disease prior to birth during a prenatal ultrasound. Prenatal diagnosis by ultrasound can allow parents the opportunity to get information about this condition and make plans for treatment after their baby is born.
Other testing and imaging is typically not needed. Further testing may be needed if there are concerns for other associated conditions.
Type II should be managed conservatively whereas type I and Ia requires to be treated surgically. Surgery involves four major steps:
- Development of the calcaneal part of the foot
- Repositioning of the navicular bone
- New adjustment of the ankle, and
- Various stabilization measures including the Grice operation and transposition of various tendons.
Treatment is usually with some combination of the Ponseti or French methods. The Ponseti method includes the following: casting together with manipulation, cutting the Achilles tendon, and bracing. The Ponseti method has been found to be effective in correcting the problem in those under the age of two. The French method involves realignment and tapping of the foot is often effective but requires a lot of effort by caregivers. Another technique known as Kite does not appear as good. In about 20% of cases further surgery is required.
Asymptomatic anatomical variations in feet generally do not need treatment.
Conservative treatment for foot pain with Morton's toe may involve exercises or placing a flexible pad under the first toe and metatarsal; an early version of the latter treatment was once patented by Dudley Joy Morton. Restoring the Morton’s toe to normal function with proprioceptive orthotics can help alleviate numerous problems of the feet such as metatarsalgia, hammer toes, bunions, Morton's neuroma, plantar fasciitis, and general fatigue of the feet. Rare cases of disabling pain are sometimes treated surgically.
There are few good estimates of prevalence for pes cavus in the general community. While pes cavus has been reported in between 2 and 29% of the adult population, there are several limitations of the prevalence data reported in these studies. Population-based studies suggest the prevalence of the cavus foot is approximately 10%.
Initial diagnosis often is made during routine physical examination. Such diagnosis can be confirmed by a medical professional such as a neurologist, orthopedic surgeon or neurosurgeon. A person with foot drop will have difficulty walking on his or her heels because he will be unable to lift the front of the foot (balls and toes) off the ground. Therefore, a simple test of asking the patient to dorsiflex may determine diagnosis of the problem. This is measured on a 0-5 scale that observes mobility. The lowest point, 0, will determine complete paralysis and the highest point, 5, will determine complete mobility.
There are other tests that may help determine the underlying etiology for this diagnosis. Such tests may include MRI, MRN, or EMG to assess the surrounding areas of damaged nerves and the damaged nerves themselves, respectively. The nerve that communicates to the muscles that lift the foot is the peroneal nerve. This nerve innervates the anterior muscles of the leg that are used during dorsi flexion of the ankle. The muscles that are used in plantar flexion are innervated by the tibial nerve and often develop tightness in the presence of foot drop. The muscles that keep the ankle from supination (as from an ankle sprain) are also innervated by the peroneal nerve, and it is not uncommon to find weakness in this area as well. Paraesthesia in the lower leg, particularly on the top of the foot and ankle, also can accompany foot drop, although it is not in all instances.
A common yoga kneeling exercise, the Varjrasana has, under the name "yoga foot drop," been linked to foot drop.
A foot deformity is a disorder of the foot that can be congenital or acquired.
Such deformities can include hammer toe, club foot, flat feet, pes cavus, etc.
Surgical treatment is only initiated if there is severe pain, as the available operations can be difficult. Otherwise, high arches may be handled with care and proper treatment.
Suggested conservative management of patients with painful pes cavus typically involves strategies to reduce and redistribute plantar pressure loading with the use of foot orthoses and specialised cushioned footwear. Other non-surgical rehabilitation approaches include stretching and strengthening of tight and weak muscles, debridement of plantar callosities, osseous mobilization, massage, chiropractic manipulation of the foot and ankle, and strategies to improve balance. There are also numerous surgical approaches described in the literature that are aimed at correcting the deformity and rebalancing the foot. Surgical procedures fall into three main groups:
1. soft-tissue procedures (e.g. plantar fascia release, Achilles tendon lengthening, tendon transfer);
2. osteotomy (e.g. metatarsal, midfoot or calcaneal);
3. bone-stabilising procedures (e.g. triple arthrodesis).
Diagnosis is made on the basis of history and a high index of suspicion. On examination there is tenderness to palpation on navicular head. Radiographs reveal typical changes of increased density and narrowing of the navicular bone
Brachymetatarsia is found to occur more frequently in women than men.
Most flexible flat feet are asymptomatic, and do not cause pain. In these cases, there is usually no cause for concern. Flat feet were formerly a physical-health reason for service-rejection in many militaries. However, three military studies on asymptomatic adults (see section below), suggest that persons with asymptomatic flat feet are at least as tolerant of foot stress as the population with various grades of arch. Asymptomatic flat feet are no longer a service disqualification in the U.S. military.
In a study performed to analyze the activation of the tibialis posterior muscle in adults with pes planus, it was noted that the tendon of this muscle may be dysfunctional and lead to disabling weightbearing symptoms associated with acquired flat foot deformity. The results of the study indicated that while barefoot, subjects activated additional lower-leg muscles to complete an exercise that resisted foot adduction. However, when the same subjects performed the exercise while wearing arch supporting orthotics and shoes, the tibialis posterior was selectively activated. Such discoveries suggest that the use of shoes with properly fitting, arch-supporting orthics will enhance selective activation of the tibialis posterior muscle thus, acting as an adequate treatment for the undesirable symptoms of pes planus.
Rigid flatfoot, a condition where the sole of the foot is rigidly flat even when a person is not standing, often indicates a significant problem in the bones of the affected feet, and can cause pain in about a quarter of those affected. Other flatfoot-related conditions, such as various forms of tarsal coalition (two or more bones in the midfoot or hindfoot abnormally joined) or an accessory navicular (extra bone on the inner side of the foot) should be treated promptly, usually by the very early teen years, before a child's bone structure firms up permanently as a young adult. Both tarsal coalition and an accessory navicular can be confirmed by X-ray. Rheumatoid arthritis can destroy tendons in the foot (or both feet) which can cause this condition, and untreated can result in deformity and early onset of osteoarthritis of the joint. Such a condition can cause severe pain and considerably reduced ability to walk, even with orthoses. Ankle fusion is usually recommended.
Treatment of flat feet may also be appropriate if there is associated foot or lower leg pain, or if the condition affects the knees or the lower back. Treatment may include using orthoses such as an arch support, foot gymnastics or other exercises as recommended by a podiatrist/orthotist or physical therapist. In cases of severe flat feet, orthoses should be used through a gradual process to lessen discomfort. Over several weeks, slightly more material is added to the orthosis to raise the arch. These small changes allow the foot structure to adjust gradually, as well as giving the patient time to acclimatise to the sensation of wearing orthoses. Once prescribed, orthoses are generally worn for the rest of the patient's life. In some cases, surgery can provide lasting relief, and even create an arch where none existed before; it should be considered a last resort, as it is usually very time consuming and costly.
Symptoms may be treated by wearing wider shoes to relieve pressure, or patient can wear padding around the toes. Surgery is also an option, if the pain and discomfort cannot be treated, or for cosmetic reasons. In this procedure, the short metatarsal is typically cut and a piece of bone is grafted between the two ends. In some cases an external fixator may be attached to the metatarsal with pins. Within the external fixator is an adjustable screw that must be turned (per doctors' orders) to lengthen the gap between bone segments, so the bone will regrow to the appropriate shape.
Following surgery, crutches or a knee scooter should be used to keep all weight off the surgically repaired foot for 3 months. After this period, orthopedic shoes or boots may be used.
No surgical outcomes studies exist for evaluating the function of the thumbs after an on-top plasty reconstruction.
Morton's Toe is a minority variant of foot shape. Its recorded prevalence varies in different populations, with estimates from 2.95% to 22%.
Training of the feet, utilizing foot gymnastics and going barefoot on varying terrain, can facilitate the formation of arches during childhood, with a developed arch occurring for most by the age of four to six years. Ligament laxity is also among the factors known to be associated with flat feet. One medical study in India with a large sample size of children who had grown up wearing shoes and others going barefoot found that the longitudinal arches of the bare-footers were generally strongest and highest as a group, and that flat feet were less common in children who had grown up wearing sandals or slippers than among those who had worn closed-toe shoes. Focusing on the influence of footwear on the prevalence of pes planus, the cross-sectional study performed on children noted that wearing shoes throughout early childhood can be detrimental to the development of a normal or a high medial longitudinal arch. The vulnerability for flat foot among shoe-wearing children increases if the child has an associated ligament laxity condition. The results of the study suggest that children be encouraged to play barefooted on various surfaces of terrain and that slippers and sandals are less harmful compared to closed-toe shoes. It appeared that closed-toe shoes greatly inhibited the development of the arch of the foot more so than slippers or sandals. This conclusion may be a result of the notion that intrinsic muscle activity of the arch is required to prevent slippers and sandals from falling off the child’s foot.
An equinovalgus is a deformity of the human foot. It may be a flexible deformity or a fixed deformity. Equino- means plantarflexed (as in standing on one's toes), and valgus means that the base of the heel is rotated away from the midline of the foot (eversion) and abduction of foot. This means that the patient is placing his/her weight on the medial border of the foot, and the arch of the foot is absent, which distorts the foot's normal shape.
Equinovalgus mostly occurs due to tightness of plantar flexors (calf muscles) and peroneus group of muscles.
Few clinical outcome studies exist regarding the treatment of central polydactyly. Tada and colleagues note that satisfactory surgical correction of central polydactyly is difficult to achieve and that outcomes are generally poor. In Tada’s study, 12 patients were reviewed. All patients required secondary surgical procedures to address flexion contractures and angular deviation at the IP joint level.
However, several primary factors contribute to the complexity of central polydactyly reconstruction. Hypoplastic joints and soft tissues that predispose the reconstructed finger to joint contracture, and angular deformities as well as complex tendon anomalies, are often difficult to address. Therefore, treatment is wholly dependent on the anatomic components present, the degree of syndactyly, and the function of the duplicated finger.
Depending on the severity of the deformities, the treatment may include the amputation of the foot or part of the leg, lengthening of the femur, extension prosthesis, or custom shoe lifts. Amputation usually requires the use of prosthesis. Another alternative is a rotationplasty procedure, also known as Van Ness surgery. In this situation the foot and ankle are surgically removed, then attached to the femur. This creates a functional "knee joint". This allows the patient to be fit with a below knee prosthesis vs a traditional above knee prosthesis.
In less severe cases, the use of an Ilizarov apparatus can be successful in conjunction with hip and knee surgeries (depending on the status of the femoral head/kneecap) to extend the femur length to normal ranges. This method of treatment can be problematic in that the Ilizarov might need to be applied both during early childhood (to keep the femur from being extremely short at the onset of growth) and after puberty (to match leg lengths after growth has ended). The clear benefit of this approach, however, is that no prosthetics are needed and at the conclusion of surgical procedures the patient will not be biologically or anatomically different from a person born without PFFD.
Most of these conditions are self-correcting during childhood. In the worst cases, surgery may be needed. Most of the time, this involves lengthening the Achilles tendon. Less severe treatment options for pigeon toe include keeping a child from crossing his or her legs, use of corrective shoes, and casting of the foot and lower legs, which is normally done before the child reaches 12 months of age or older.
If the pigeon toe is mild and close to the center, treatment may not be necessary.
Ballet has been used as a treatment for mild cases. Dance exercises can help to bend the legs outward.
Rocker bottom foot, also known as congenital vertical talus, is an anomaly of the foot. It is characterized by a prominent calcaneus (heel bone) and a convex rounded bottom of the foot. It gets its name from the foot's resemblance to the bottom of a rocking chair.
It can be associated with Edwards' syndrome (trisomy 18), Patau syndrome (trisomy 13), Trisomy 9 and mutation in the gene HOXD10.
It can also be associated with Charcots foot.
Though a neuroma is a soft tissue abnormality and will not be visualized on standard radiographs, the first step in the assessment of forefoot pain is an X-ray in order to evaluate for the presence of arthritis and exclude stress fractures/reactions and focal bone lesions, which may mimic the symptoms of a neuroma. Ultrasound (sonography) accurately demonstrates thickening of the interdigital nerve within the web space of greater than 3mm, diagnostic of a Morton’s neuroma. This typically occurs at the level of the intermetatarsal ligament. Frequently, intermetatarsal bursitis coexists with the diagnosis. Other conditions that may also be visualized with ultrasound and can be clinically confused with a neuroma include synovitis/capsulitis from the adjacent metatarsophalangeal joint, stress fractures/reaction, and plantar plate disruption. MRI can similarly demonstrate the above conditions; however, in the setting where more than one abnormality coexists, ultrasound has the added advantage of determining which may be the source of the patient’s pain by applying direct pressure with the probe. Further to this, ultrasound can be used to guide treatment such as cortisone injections into the webspace, as well as alcohol ablation of the nerve.
Diagnosis of a trigger thumb is solely made by these clinical observations and further classified into four stages:
Soft tissue constriction on the medial aspect of the fifth toe is the most frequently presented radiological sign in the early stages. Distal swelling of the toe is considered to be a feature of the disease. In grade III lesions osteolysis is seen in the region of the proximal interphalangeal joint with a characteristic tapering effect. Dispersal of the head of the proximal phalanx is frequently seen. Finally, after autoamputation, the base of the proximal phalanx remains. Radiological examination allows early diagnosis and staging of ainhum. Early diagnosis is crucial to prevent amputation.
Doppler shows decreased blood flow in posterior tibial artery.
One of the biggest risks factors faced by the affected foals is susceptibility to secondary infection. Within three to eight days after birth, the foal may die from infection or is euthanized for welfare reasons.
Ainhum is an acquired and progressive condition, and thus differs from congenital annular constrictions. Ainhum has been much confused with similar constrictions caused by other diseases such as leprosy, diabetic gangrene, syringomyelia, scleroderma or Vohwinkel syndrome. In this case, it is called pseudo-ainhum, treatable with minor surgery or intralesional corticosteroids, as with ainhum. It has even been seen in psoriasis or it is acquired by the wrapping toes, penis or nipple with hairs, threads or fibers. Oral retinoids, such as tretinoin, and antifibrotic agents like tranilast have been tested for pseudo-ainhum. Impending amputation in Vohwinkel syndrome can sometimes be aborted by therapy with oral etretinate. It is rarely seen in the United States but often discussed in the international medical literature.