Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Achondroplasia can be detected before birth by prenatal ultrasound. A DNA test can be performed before birth to detect homozygosity, wherein two copies of the mutant gene are inherited, a lethal condition leading to stillbirths. Clinical features include megalocephaly, short limbs, prominent forehead, thoracolumbar kyphosis and mid-face hypoplasia. Complications like dental malocclusion, hydrocephalus and repeated otitis media can be observed. The risk of death in infancy is increased due to the likelihood of compression of the spinal cord with or without upper airway obstruction.
A skeletal survey is useful to confirm the diagnosis of achondroplasia. The skull is large, with a narrow foramen magnum, and relatively small skull base. The vertebral bodies are short and flattened with relatively large intervertebral disk height, and there is congenitally narrowed spinal canal. The iliac wings are small and squared, with a narrow sciatic notch and horizontal acetabular roof. The tubular bones are short and thick with metaphyseal cupping and flaring and irregular growth plates. Fibular overgrowth is present. The hand is broad with short metacarpals and phalanges, and a trident configuration. The ribs are short with cupped anterior ends. If the radiographic features are not classic, a search for a different diagnosis should be entertained. Because of the extremely deformed bone structure, people with achondroplasia are often "double jointed".
The diagnosis can be made by fetal ultrasound by progressive discordance between the femur length and biparietal diameter by age. The trident hand configuration can be seen if the fingers are fully extended."
Another distinct characteristic of the syndrome is thoracolumbar gibbus in infancy.
Achondrogenesis, type 1B is a severe autosomal recessive skeletal disorder, invariable fatal in the perinatal period. It is characterized by extremely short limbs, a narrow chest, and a prominent, rounded abdomen. The fingers and toes are short and the feet may be rotated inward. Affected infants frequently have a soft out-pouching around the belly-button (an umbilical hernia) or near the groin (an inguinal hernia).
Achondrogenesis, type 1B is a rare genetic disorder; its incidence is unknown. Achondrogenesis, type 1B is the most severe condition in a spectrum of skeletal disorders caused by mutations in the "SLC26A2" gene. This gene provides instructions for making a protein that is essential for the normal development of cartilage and for its conversion to bone. Mutations in the "SLC26A2" gene disrupt the structure of developing cartilage, preventing bones from forming properly and resulting in the skeletal problems characteristic of achondrogenesis, type 1B.
Achondrogenesis, type 1B is inherited in an autosomal recessive pattern, which means two copies of the gene in each cell are altered. Most often, the parents of an individual with an autosomal recessive disorder are carriers of one copy of the altered gene but do not show signs and symptoms of the disorder.
The diagnosis of this syndrome can be made on clinical examination and perinatal autopsy.
Koenig and Spranger (1986) noted that eye lesions are apparently nonobligatory components of the syndrome. The diagnosis of Fraser syndrome should be entertained in patients with a combination of acrofacial and urogenital malformations with or without cryptophthalmos. Thomas et al. (1986) also emphasized the occurrence of the cryptophthalmos syndrome without cryptophthalmos and proposed diagnostic criteria for Fraser syndrome. Major criteria consisted of cryptophthalmos, syndactyly, abnormal genitalia, and positive family history. Minor criteria were congenital malformation of the nose, ears, or larynx, cleft lip and/or palate, skeletal defects, umbilical hernia, renal agenesis, and mental retardation. Diagnosis was based on the presence of at least 2 major and 1 minor criteria, or 1 major and 4 minor criteria.
Boyd et al. (1988) suggested that prenatal diagnosis by ultrasound examination of eyes, digits, and kidneys should detect the severe form of the syndrome. Serville et al. (1989) demonstrated the feasibility of ultrasonographic diagnosis of the Fraser syndrome at 18 weeks' gestation. They suggested that the diagnosis could be made if 2 of the following signs are present: obstructive uropathy, microphthalmia, syndactyly, and oligohydramnios. Schauer et al. (1990) made the diagnosis at 18.5 weeks' gestation on the basis of sonography. Both the female fetus and the phenotypically normal father had a chromosome anomaly: inv(9)(p11q21). An earlier born infant had Fraser syndrome and the same chromosome 9 inversion.
Van Haelst et al. (2007) provided a revision of the diagnostic criteria for Fraser syndrome according to Thomas et al. (1986) through the addition of airway tract and urinary tract anomalies to the major criteria and removal of mental retardation and clefting as criteria. Major criteria included syndactyly, cryptophthalmos spectrum, urinary tract abnormalities, ambiguous genitalia, laryngeal and tracheal anomalies, and positive family history. Minor criteria included anorectal defects, dysplastic ears, skull ossification defects, umbilical abnormalities, and nasal anomalies. Cleft lip and/or palate, cardiac malformations, musculoskeletal anomalies, and mental retardation were considered uncommon. Van Haelst et al. (2007) suggested that the diagnosis of Fraser syndrome can be made if either 3 major criteria, or 2 major and 2 minor criteria, or 1 major and 3 minor criteria are present in a patient.
Spondyloepiphyseal dysplasia congenita (abbreviated to SED more often than SDC) is a rare disorder of bone growth that results in dwarfism, characteristic skeletal abnormalities, and occasionally problems with vision and hearing. The name of the condition indicates that it affects the bones of the spine (spondylo-) and the ends of bones (epiphyses), and that it is present from birth (congenital). The signs and symptoms of spondyloepiphyseal dysplasia congenita are similar to, but milder than, the related skeletal disorders achondrogenesis type 2 and hypochondrogenesis. Spondyloepiphyseal dysplasia congenita is a subtype of collagenopathy, types II and XI.
Achondrogenesis is a number of disorders that are the most severe form of congenital chondrodysplasia (malformation of bones and cartilage). These conditions are characterized by a small body, short limbs, and other skeletal abnormalities. As a result of their serious health problems, infants with achondrogenesis are usually born prematurely, are stillborn, or die shortly after birth from respiratory failure. Some infants, however, have lived for a while with intensive medical support.
Researchers have described at least three forms of achondrogenesis, designated as Achondrogenesis type 1A, achondrogenesis type 1B and achondrogenesis type 2. These types are distinguished by their signs and symptoms, inheritance pattern, and genetic cause. Other types of achondrogenesis may exist, but they have not been characterized or their cause is unknown.
Achondrogenesis type 1A is caused by a defect in the microtubules of the Golgi apparatus. In mice, a nonsense mutation in the thyroid hormone receptor interactor 11 gene (Trip11), which encodes the Golgi microtubule-associated protein 210 (GMAP-210), resulted in defects similar to the human disease. When their DNA was sequenced, human patients with achondrogenesis type 1A also had loss-of-function mutations in GMAP-210. GMAP-210 moves proteins from the endoplasmic reticulum to the Golgi apparatus. Because of the defect, GMAP-210 is not able to move the proteins, and they remain in the endoplasmic reticulum, which swells up. The loss of Golgi apparatus function affects some cells, such as those responsible for forming bone and cartilage, more than others.
Achondrogenesis type 1B is caused by a similar mutation in SLC26A2, which encodes a sulfate transporter.
Sclerosteosis is caused by mutations in the gene that encode for the sclerostin protein.
Hypochondrogenesis is a severe genetic disorder causing malformations of bone growth. The condition is characterized by a short body and limbs and abnormal bone formation in the spine and pelvis.
Hypochondrogenesis is a subtype of collagenopathy, types II and XI, and is similar to another skeletal disorder, achondrogenesis type 2, although the spinal changes seen in hypochondrogenesis tend to be somewhat milder.
Sclerosteosis is an autosomal recessive disorder characterized by bone overgrowth. It was first described in 1958 but given the current name in 1967. Excessive bone formation is most prominent in the skull, mandible and tubular bones. It can cause facial distortion and syndactyly. Increased intracranial pressure can cause sudden death in patients. It is a rare disorder that is most prominent in the Afrikaner population in South Africa (40 patients), but there have also been cases of American and Brazilian families.
Amniotic band syndrome is considered an accidental event and it does not appear to be genetic or hereditary, so the likelihood of it occurring in another pregnancy is remote. The cause of amnion tearing is unknown and as such there are no known preventative measures.
Infants with achondrogenesis, type 2 have short arms and legs, a small chest with short ribs, and underdeveloped lungs. Achondrogenesis, type 2 is a subtype of collagenopathy, types II and XI. This condition is also associated with a lack of bone formation (ossification) in the spine and pelvis. Typical facial features include a prominent forehead, a small chin, and, in some cases, an opening in the roof of the mouth (a cleft palate). The abdomen is enlarged, and affected infants often have a condition called hydrops fetalis in which excess fluid builds up in the body before birth. The skull bones may be soft, but they often appear normal on X-ray images. In contrast, bones in the spine (vertebrae) and pelvis do not harden.
Achondrogenesis, type 2 and hypochondrogenesis (a similar skeletal disorder) together affect 1 in 40,000 to 60,000 births. Achondrogenesis, type 2 is one of several skeletal disorders caused by mutations in the "COL2A1" gene. This gene provides instructions for making a protein that forms type II collagen. This type of collagen is found mostly in cartilage and in the clear gel that fills the eyeball (the vitreous). It is essential for the normal development of bones and other tissues that form the body's supportive framework (connective tissues). Mutations in the "COL2A1" gene interfere with the assembly of type II collagen molecules, which prevents bones and other connective tissues from developing properly.
Achondrogenesis, type 2 is considered an autosomal dominant disorder because one copy of the altered gene in each cell is sufficient to cause the condition. The disorder is not passed on to the next generation, however, because affected individuals hardly survive past puberty.
Affected infants have short arms and legs, a small chest with short ribs, and underdeveloped lungs. The spinal bones (vertebrae) in the neck and part of the pelvis (the sacrum) do not harden, or ossify, properly. The face appears flat and oval-shaped, with widely spaced eyes, a small chin, and, in some cases, an opening in the roof of the mouth called a cleft palate. The abdomen is enlarged, and excess fluid may build up in the body before birth (a condition called hydrops fetalis).
As a result of these serious health problems, infants are usually premature and stillborn or die shortly after birth from respiratory failure. Some infants have lived for a time, however, with intensive medical support. Babies who live past the newborn period are usually reclassified as having spondyloepiphyseal dysplasia congenita, a related disorder on the spectrum of abnormal bone growth.
Amniotic band syndrome is often difficult to detect before birth as the individual strands are small and hard to see on ultrasound. Often the bands are detected indirectly because of the constrictions and swelling upon limbs, digits, etc. Misdiagnosis is also common, so if there are any signs of amniotic bands, further detailed ultrasound tests should be done to assess the severity. 3D ultrasound and MRI can be used for more detailed and accurate diagnosis of bands and the resulting damage/danger to the fetus.
Acheiropodia (ACHP), also known as Horn-Kolb Syndrome, Acheiropody and Aleijadinhos (Brazilian type), is an autosomal recessive disorder that results in hemimelia, a lack of formation of the distal extremities.
This is a congenital defect which consists of bilateral amputations of the distal upper and lower extremities, as well as aplasia of the hands and feet. It was first discovered and is prevalent almost exclusively in Brazil.
Collagen, type II, alpha 1 (primary osteoarthritis, spondyloepiphyseal dysplasia, congenital), also known as COL2A1, is a human gene that provides instructions for the production of the pro-alpha1(II) chain of type II collagen.
Spondyloepiphyseal dysplasia congenita is one of a spectrum of skeletal disorders caused by mutations in the "COL2A1" gene. The protein made by this gene forms type II collagen, a molecule found mostly in cartilage and in the clear gel that fills the eyeball (the vitreous). Type II collagen is essential for the normal development of bones and other connective tissues. Mutations in the "COL2A1" gene interfere with the assembly of type II collagen molecules, which prevents bones from developing properly and causes the signs and symptoms of this condition.
Spondyloepiphyseal dysplasia congenita is inherited in an autosomal dominant pattern, which means one copy of the altered gene is sufficient to cause the disorder.
A 2009 revision of the traditional Chompret criteria for screening has been proposed:
A proband who has:
- tumor belonging to the LFS tumor spectrum - soft tissue sarcoma, osteosarcoma, pre-menopausal breast cancer, brain tumor, adrenocortical carcinoma, leukemia or lung bronchoalveolar cancer - before age 46 years;
and at least one of the following:
- at least one first or second degree relative with an LFS tumour (except breast cancer if the proband has breast cancer) before age 56 years or with multiple tumours
- a proband with multiple tumours (except multiple breast tumours), two of which belong to the LFS tumour spectrum and the first of which occurred before age 46 years
- a proband who is diagnosed with adrenocortical carcinoma or choroid plexus tumour, irrespective of family history
Genetic counseling and genetic testing are used to confirm that somebody has this gene mutation. Once such a person is identified, early and regular screenings for cancer are recommended for him or her as people with Li–Fraumeni are likely to develop another primary malignancy at a future time (57% within 30 years of diagnosis).
ACHP has been associated with a mutation in the "LMBR1" gene. The disorder is inherited in an autosomal recessive manner. This means the defective gene responsible for the disorder is located on an autosome, and two copies of the defective gene (one inherited from each parent) are required in order to be born with the disorder. The parents of an individual with an autosomal recessive disorder both carry one copy of the defective gene, but usually do not experience any signs or symptoms of the disorder.
This gene encodes the alpha-1 chain of type II collagen, a fibrillar collagen found in cartilage and the vitreous humor of the eye. Mutations in this gene are associated with achondrogenesis, chondrodysplasia, early onset familial osteoarthritis, SED congenita, Langer-Saldino achondrogenesis, Kniest dysplasia, Stickler syndrome type I, and spondyloepimetaphyseal dysplasia Strudwick type. In addition, defects in processing chondrocalcin, a calcium binding protein that is the C-propeptide of this collagen molecule, are also associated with chondrodysplasia. There are two transcripts identified for this gene.
Type II collagen, which adds structure and strength to connective tissues, is found primarily in cartilage, the jelly-like substance that fills the eyeball (the vitreous), the inner ear, and the center portion of the discs between the vertebrae in the spine (nucleus pulposus). Three pro-alpha1(II) chains twist together to form a triple-stranded, ropelike procollagen molecule. These procollagen molecules must be processed by enzymes in the cell. Once these molecules are processed, they leave the cell and arrange themselves into long, thin fibrils that cross-link to one another in the spaces around cells. The cross-linkages result in the formation of very strong mature type II collagen fibers.
The COL2A1 gene is located on the long (q) arm of chromosome 12 between positions 13.11 and 13.2, from base pair 46,653,017 to base pair 46,684,527.
The syndrome is generally diagnosed clinically shortly after birth. The infant usually has respiratory difficulty, especially when supine. The cleft palate is often U-shaped and wider than in cleft palate that is not associated with this syndrome.
The incidence of Fraser syndrome is 0.043 per 10,000 live born infants and 1.1 in 10,000 stillbirths, making it a rare syndrome.
Because MOMO is such a rare disorder, very few studies have been conducted into its causes. Current research suggests that it is linked to a de novo (new) autosomal dominant mutation.
MOMO syndrome is an extremely rare genetic disorder which belongs to the overgrowth syndromes and has been diagnosed in only six cases around the world, and occurs in 1 in 100 million births. The name is an acronym of the four primary aspects of the disorder: Macrosomia (excessive birth weight), Obesity, Macrocephaly (excessive head size) and Ocular abnormalities. It is unknown if it is a life-limiting condition. MOMO syndrome was first diagnosed in 1993 by Professor Célia Priszkulnik Koiffmann, a Brazilian researcher in the Genetic and Clinical Studies of neurodevelopmental disorders.
This syndrome's acronym is an intended pun. It refers to the traditionally tall and obese king of Carnivals, Momus—Rei Momo in Portuguese.
The prevalence has been estimated at 1 in 10,000 births, but exact values are hard to know because some that have the symptoms rarely have Pierre-Robin sequence (without any other associated malformation).