Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Most countries have standard newborn exams that include a hip joint exam screening for early detection of hip dysplasia.
Sometimes during an exam a "click" or more precisely "clunk" in the hip may be detected (although not all clicks indicate hip dysplasia). When a hip click (also known as "clicky hips" in the UK) is detected, the child's hips are tracked with additional screenings to determine if developmental dysplasia of the hip is caused.
Two maneuvers commonly employed for diagnosis in neonatal exams are the Ortolani maneuver and the Barlow maneuver.
In order to do the Ortolani maneuver it is recommended that the examiner put the newborn baby in a position in which the contralateral hip is held still while the thigh of the hip being tested is abducted and gently pulled anteriorly. If a "clunk" is heard (the sound of the femoral head moving over the acetabulum), the joint is normal, but absence of the "clunk" sound indicates that the acetabulum is not fully developed. The next method that can be used is called the Barlow maneuver. It is done by adducting the hip while pushing the thigh posteriorly. If the hip goes out of the socket it means it is dislocated, and the newborn has a congenital hip dislocation. The baby is laid on its back for examination by separation of its legs. If a clicking sound can be heard, it indicates that the baby may have a dislocated hip. It is highly recommended that these maneuvers be done when the baby is not fussing, because the baby may inhibit hip movement.
The condition can be confirmed by ultrasound and X-ray. Ultrasound imaging yields better results defining the anatomy until the cartilage is ossified. When the infant is around 3 months old a clear roentgenographic image can be achieved. Unfortunately the time the joint gives a good x-ray image is also the point at which nonsurgical treatment methods cease to give good results. In x-ray imaging dislocation may be indicated if the Shenton's line (an arc drawn from the medial aspect of the femoral neck through the superior margin of the obturator foramen) does not result in a smooth arc. However, in infants this line can be unreliable as it depends on the rotation of the hip when the image is taken ()
Asymmetrical gluteal folds and an apparent limb-length inequality can further indicate unilateral hip dysplasia. Most vexingly, many newborn hips show a certain ligamentous laxity, on the other hand severely malformed joints can appear stable. That is one reason why follow-up exams and developmental monitoring are important. Frequency and methods of routine screenings in children is still in debate however physical examination of newborns followed by appropriate use of hip ultrasound is widely accepted.
The Harris hip score (developed by William H. Harris MD, an orthopedist from Massachusetts) is one way to evaluate hip function following surgery. Other scoring methods are based on patients' evaluation like e.g. the Oxford hip score, HOOS and WOMAC score. Children's Hospital Oakland Hip Evaluation Scale (CHOHES) is a modification of the Harris hip score that is currently being evaluated.
Hip dysplasia can develop in older age. Adolescents and adults with hip dysplasia may present with hip pain and in some cases hip labral tears. X-rays are used to confirm a diagnosis of hip dysplasia. CT scans and MRI scans are occasionally used too.
The classic diagnostic technique is with appropriate X-rays and hip scoring tests. These should be done at an appropriate age, and perhaps repeated at adulthood - if done too young they will not show anything. Since the condition is to a large degree inherited, the hip scores of parents should be professionally checked before buying a pup, and the hip scores of dogs should be checked before relying upon them for breeding. Despite the fact that the condition is inherited, it can occasionally arise even to animals with impeccably hip scored parents.
In diagnosing suspected dysplasia, the x-ray to evaluate the internal state of the joints is usually combined with a study of the animal and how it moves, to confirm whether its quality of life is being affected. Evidence of lameness or abnormal hip or spine use, difficulty or reduced movement when running or navigating steps, are all evidence of a problem. Both aspects have to be taken into account since there can be serious pain with little X-ray evidence.
It is also common to X-ray the spine and legs, as well as the hips, where dysplasia is suspected, since soft tissues can be affected by the extra strain of a dysplastic hip, or there may be other undetected factors such as neurological issues (e.g. nerve damage) involved.
There are several standardized systems for categorising dysplasia, set out by respective reputable bodies (Orthopedic Foundation for Animals/OFA, PennHIP, British Veterinary Association/BVA). Some of these tests require manipulation of the hip joint into standard positions, in order to reveal their condition on an X-ray.
The following conditions can give symptoms very similar to hip dysplasia, and should be ruled out during diagnosis:
- Cauda equina syndrome (i.e. lower back problems)
- Cranial (anterior) cruciate ligament tears
- Other rear limb arthritic conditions
- Osteochondritis dissecans and elbow dysplasia in the forelimbs are difficult to diagnose as the animal may only exhibit an unusual gait, and may be masked by, or misdiagnosed as, hip dysplasia.
A dog may misuse its rear legs, or adapt its gait, to compensate for pain in the "forelimbs", notably osteoarthritis, osteochondritis (OCD) or shoulder or elbow dysplasia, as well as pain in the hocks and stifles or spinal issues. It is important to rule out other joint and bodily issues before concluding that only hip dysplasia is present. Even if some hip dysplasia is present, it is possible for other conditions to co-exist or be masked by it.
In 1979 Dr. John F. Crowe et al. proposed a classification to define the degree of malformation and dislocation. Grouped from least severe Crowe I dysplasia to most severe Crowe IV. This classification is very useful for studying treatment results.
Rather than using the Wiberg angle because it makes it difficult to quantify the degree of dislocation they used 3 key elements to determine the degree of subluxation: A reference line at the lower rim of the "teardrop", junction between the femoral head and neck of the respective joint and the height of the pelvis (vertical measurement). They studied anteroposterior pelvic x-rays and drew horizontal lines through the lower rim of a feature called "teardrop". The distance between this line and the middle lines of the junction between femur head and neck gave them a measure of the degree of femur head subluxation. They further established that a "normal" diameter of the femur head measures 20% of the height of the pelvis. If the middle line of the neck-head junction was more than 10% of the pelvis height above the reference line they considered the joint to be more than 50% dislocated.
The following types resulted:
FAI-related pain is often felt in the groin, but may also be experienced in the lower back or around the hip. The diagnosis, often with a co-existing labral tear, typically involves physical examination in which the range of motion of the hip is tested. Limited flexibility leads to further examination with x-ray, providing a two-dimensional view of the hip joints. Additional specialized views, such as the Dunn view, may make x-ray more sensitive. Subsequent imaging techniques such as CT or MRI may follow producing a three-dimensional reconstruction of the joint to evaluate the hip cartilage, demonstrate signs of osteoarthritis, or measure hip socket angles (e.g. the alpha-angle as described by Nötzli in 2-D and by Siebenrock in 3-D). It is also possible to perform dynamic simulation of hip motion with CT or MRI assisting to establish whether, where, and to what extent, impingement is occurring.
Diagnosis is through x-rays, arthroscopy or CT (computed tomography). In cases with significant lameness, surgery is the best option, especially with UAP. However, conservative treatment is often enough for cases of FMCP and OCD of the medial humeral epicondyle. The dogs are exercised regularly and given pain medication, and between the ages of 12 to 18 months the lameness will often improve or disappear. Control of body weight is important in all cases of elbow dysplasia, and prevention of quick growth spurts in puppies may help to prevent the disease.
Surgery for FMCP consists of removal of cartilage and bone fragments and correction of any incongruity of the joint. Reattachment of UAP with a screw is usually attempted before the age of 24 weeks, and after that age the typical treatment is removal of the UAP. Without surgery, UAP rapidly progresses to osteoarthritis, but with FMCP osteoarthritis typically occurs with or without surgery. Osteoarthritis is also a common sequela of OCD of the humerus despite medical or surgical treatment. Elbow replacement surgery has been developed and can be an option for treatment
Diagnosis should be based on the clinical and radiographic findings and a genetic analysis can be assessed.
The Orthopedic Foundation for Animals in the United States will grade elbow X-rays of dogs intended for breeding.
Exact diagnosis remains widely built on precise history taking, with the characteristic clinical and radiographic skeletal features. Genetic diagnosis is based on DNA sequencing. Because plasma COMP levels are significantly reduced in patients with COMP mutations, such as pseudoachondroplasia, measuring plasma COMP levels has become a reliable means of diagnosing this and pathopysiologically similar disorders.
The treatment of FAI varies. Conservative treatment includes reducing levels of physical activity, anti-inflammatory medication and physiotherapy. Physical therapy may optimize alignment and mobility of the joint, thereby decreasing excessive forces on irritable or weakened tissues. It may also identify specific movement patterns that may be causing injury.
Due to the frequency of diagnosis in adolescents and young adults, various surgical techniques have been developed with the goal of preserving the hip joint. Surgery may be arthroscopic or open, peri-acetabular or rotational osteotomies being two common open surgical techniques employed when an abnormal angle between femur and acetabulum has been demonstrated. These primarily aim to alter the angle of the hip socket in such a way that contact between the acetabulum and femoral head are greatly reduced, allowing a greater range of movement. Femoral sculpting may be performed simultaneously, if required for a better overall shape of the hip joint. It is unclear whether or not these interventions effectively delay or prevent the onset of arthritis. Well designed, long term studies evaluating the efficacy of these treatments have not been done.
A 2011 study analyzing current surgical methods for management of symptomatic femoral acetabular impingement (FAI), suggested that arthroscopic method had surgical outcomes equal to or better than other methods with a lower rate of major complications when performed by experienced surgeons.
X-Ray
Bubbly lytic lesion / Ground glass
Imaging tests. Computerized tomography or magnetic resonance imaging scans may be used to determine how extensively your bones are affected.
Bone scan. This test uses radioactive tracers, which are injected into your bloodstream. The damaged parts of your bones take up more of the tracers, which show up more brightly on the scan.
Biopsy. This test uses a hollow needle to remove a small piece of the affected bone for laboratory analysis.
Anterior-posterior (AP) X-rays of the pelvis, AP and lateral views of the femur (knee included) are ordered for diagnosis. The size of the head of the femur is then compared across both sides of the pelvis. The affected femoral head will appear larger if the dislocation is anterior, and smaller if posterior. A CT scan may also be ordered to clarify the fracture pattern.
Ischiopatellar dysplasia is usually identified through radiographic evidence since its characteristic changes are most notable in radiographic tests that indicate delayed boneage or absent ossification. A full skeletal survey should be performed on any patient that has an absent or hypoplastic patellae since they could potentially have ischiopatellar dysplasia. Magnetic resonance imaging (MRI) is especially helpful in the diagnosis of ischiopatellar syndrome and is recommended when an individual affected by ischiopatellar dysplasia has a traumatic injury to the knee.
Accurate assessment of plain radiographic findings remains an important contributor to diagnosis of pseudoachondroplasia. It is noteworthy that vertebral radiographic abnormalities tend to resolve over time. Epiphyseal abnormalities tend to run a progressive course. Patients usually suffer early-onset arthritis of hips and knees. Many unique skeletal radiographic abnormalities of patients with pseudoachondroplasia have been reported in the literature.
- Together with rhizomelic limb shortening, the presence of epiphyseal-metaphyseal changes of the long bones is a distinctive radiologic feature of pseudoachondroplasia.
- Hypoplastic capital femoral epiphyses, broad short femoral necks, coxa vara, horizontality of acetabular roof and delayed eruption of secondary ossification center of os pubis and greater trochanter.
- Dysplastic/hypoplastic epiphyses especially of shoulders and around the knees.
- Metaphyseal broadening, irregularity and metaphyseal line of ossification. These abnormalities that are typically encountered in proximal humerus and around the knees are collectively known as “rachitic-like changes”.
- Radiographic lesions of the appendicular skeleton are typically bilateral and symmetric.
- Oval shaped vertebrae with anterior beak originating and platyspondyly demonstrated on lateral radiographs of the spine.
- Normal widening of the interpedicular distances caudally demonstrated on anteroposterior radiographs of the dorsolumbar region. This is an important differentiating feature between pseudoachondroplasia and achondroplasia.
- Odontoid hypoplasia may occur resulting in cervical instability.
A combination of medical tests are used to diagnosis kniest dysplasia. These tests can include:
- Computer Tomography Scan(CT scan) - This test uses multiple images taken at different angles to produce a cross-sectional image of the body.
- Magnetic Resonance Imaging (MRI) - This technique proves detailed images of the body by using magnetic fields and radio waves.
- EOS Imaging - EOS imaging provides information on how musculoskeletal system interacts with the joints. The 3D image is scanned while the patient is standing and allows the physician to view the natural, weight-bearing posture.
- X-rays - X-ray images will allow the physician to have a closer look on whether or not the bones are growing abnormally.
The images taken will help to identify any bone anomalies. Two key features to look for in a patient with kniest dysplasia is the presence of dumb-bell shaped femur bones and coronal clefts in the vertebrae. Other features to look for include:
- Platyspondyly (flat vertebral bodies)
- Kyphoscoliosis (abnormal rounding of the back and lateral curvature of the spine)
- Abnormal growth of epiphyses, metaphyses, and diaphysis
- Short tubular bones
- Narrowed joint spaces
Genetic Testing - A genetic sample may be taken in order to closely look at the patient's DNA. Finding an error in the COL2A1 gene will help identify the condition as a type II chondroldysplasia.
The hip should be reduced as quickly as possible to reduce the risk of osteonecrosis of the femoral head. This is done via inline manual traction with general anesthesia and muscle relaxation, or conscious sedation. Fractures of the femoral head and other loose bodies should be determined prior to reduction. Common closed reduction methods include the Allis method and Stimson method. Once reduction is completed management becomes less urgent and appropriate workup including CT scanning can be completed. Post-reduction, patients may begin early crutch-assisted ambulation with weight bearing as tolerated.
Treatment in fibrous dysplasia is mainly palliative, and is focused on managing fractures and preventing deformity. There are no medications capable of altering the disease course. Intravenous bisphosphonates may be helpful for treatment of bone pain, but there is no clear evidence that they strengthen bone lesions or prevent fractures. Surgical techniques that are effective in other disorders, such as bone grafting, curettage, and plates and screws, are frequently ineffective in fibrous dysplasia and should be avoided. Intramedullary rods are generally preferred for management of fractures and deformity in the lower extremities. Progressive scoliosis can generally be managed with standard instrumentation and fusion techniques. Surgical management in the craniofacial skeleton is complicated by frequent post-operative FD regrowth, and should focus on correction of functional deformities. Prophylactic optic nerve decompression increases the risk of vision loss and is contraindicated.
Managing endocrinopathies is a critical component of management in FD. All patients with fibrous dysplasia should be evaluated and treated for endocrine diseases associated with McCune–Albright syndrome. In particular untreated growth hormone excess may worsen craniofacial fibrous dysplasia and increase the risk of blindness. Untreated hypophosphatemia increases bone pain and risk of fractures.
In cases of a minor deviation of the wrist, treatment by splinting and stretching alone may be a sufficient approach in treating the radial deviation in RD. Besides that, the parent can support this treatment by performing passive exercises of the hand. This will help to stretch the wrist and also possibly correct any extension contracture of the elbow. Furthermore, splinting is used as a postoperative measure trying to avoid a relapse of the radial deviation.
More severe types (Bayne type III en IV) of radial dysplasia can be treated with surgical intervention. The main goal of centralization is to increase hand function by positioning the hand over the distal ulna, and stabilizing the wrist in straight position. Splinting or soft-tissue distraction may be used preceding the centralization.
In classic centralization central portions of the carpus are removed to create a notch for placement of the ulna. A different approach is to place the metacarpal of the middle finger in line with the ulna with a fixation pin.
If radial tissues are still too short after soft-tissue stretching, soft tissue release and different approaches for manipulation of the forearm bones may be used to enable the placement of the hand onto the ulna. Possible approaches are shortening of the ulna by resection of a segment, or removing carpal bones. If the ulna is significantly bent, osteotomy may be needed to straighten the ulna. After placing the wrist in the correct position, radial wrist extensors are transferred to the extensor carpi ulnaris tendon, to help stabilize the wrist in straight position. If the thumb or its carpometacarpal joint is absent, centralization can be followed by pollicization. Postoperatively, a long arm plaster splinter has to be worn for at least 6 to 8 weeks. A removable splint is often worn for a long period of time.
Radial angulation of the hand enables patients with stiff elbows to reach their mouth for feeding; therefore treatment is contraindicated in cases of extension contracture of the elbow. A risk of centralization is that the procedure may cause injury to the ulnar physis, leading to early epiphyseal arrest of the ulna, and thereby resulting in an even shorter forearm. Sestero et al. reported that ulnar growth after centralization reaches from 48% to 58% of normal ulnar length, while ulnar growth in untreated patients reaches 64% of normal ulnar length. Several reviews note that centralization can only partially correct radial deviation of the wrist and that studies with longterm follow-up show relapse of radial deviation.
If the femur head is dislocated, it should be reduced as soon as possible, to prevent damage to its blood supply. This is preferably done under anaesthesia, following which, leg is kept pulled by applying traction to prevent joint from dislocating.
The final management depends on the size of the fragment(s), stability and congruence of the joint. In some cases traction for six to eight weeks may be the only treatment required; however, surgical fixation using screw(s) and plate(s) may be required if the injury is more complex. The latter treatment will be called for if bone fragments do not fall into place, or if they are found in the joint, or if the joint itself is unstable.
At the site of injury: After stabilizing an injured person and resuscitation, quick examination is done to check injury to vital organs.
If one suspects injury to the hip, it is imperative to immobilse the limb using some kind of support to prevent movements of the injured limb to prevent further damage
A trained paramedic may be able to diagnose hip dislocation by noticing the position of the injured limb. It is essential to document status of nerves and vessels before starting any treatment to protect oneself from litigation
On arrival at the hospital, trained trauma surgeon will assess the patient and prescribe necessary tests including x-rays as described earlier.
Non-surgical management consists of reducing the dislocated joint by maneuver under anaesthesia and applying traction to the limb to maintain position of joint and fractured bones. If non surgical management is preferred it may require six weeks to 3 months for recovery.
Symptomatic individuals should be seen by an orthopedist to assess the possibility of treatment (physiotherapy for muscular strengthening, cautious use of analgesic medications such as nonsteroidal anti-inflammatory drugs). Although there is no cure, surgery is sometimes used to relieve symptoms. Surgery may be necessary to treat malformation of the hip (osteotomy of the pelvis or the collum femoris) and, in some cases, malformation (e.g., genu varum or genu valgum). In some cases, total hip replacement may be necessary. However, surgery is not always necessary or appropriate.
Sports involving joint overload are to be avoided, while swimming or cycling are strongly suggested. Cycling has to be avoided in people having ligamentous laxity.
Weight control is suggested.
The use of crutches, other deambulatory aids or wheelchair is useful to prevent hip pain. Pain in the hand while writing can be avoided using a pen with wide grip.
The disorder is progressive, with the ultimate severity of symptoms often depending on age of onset. In severe cases amputation has been performed when conservative measures such as physical therapy and regional anesthetics have been ineffective.
A skeletal survey is useful to confirm the diagnosis of achondroplasia. The skull is large, with a narrow foramen magnum, and relatively small skull base. The vertebral bodies are short and flattened with relatively large intervertebral disk height, and there is congenitally narrowed spinal canal. The iliac wings are small and squared, with a narrow sciatic notch and horizontal acetabular roof. The tubular bones are short and thick with metaphyseal cupping and flaring and irregular growth plates. Fibular overgrowth is present. The hand is broad with short metacarpals and phalanges, and a trident configuration. The ribs are short with cupped anterior ends. If the radiographic features are not classic, a search for a different diagnosis should be entertained. Because of the extremely deformed bone structure, people with achondroplasia are often "double jointed".
The diagnosis can be made by fetal ultrasound by progressive discordance between the femur length and biparietal diameter by age. The trident hand configuration can be seen if the fingers are fully extended."
Another distinct characteristic of the syndrome is thoracolumbar gibbus in infancy.
Achondroplasia can be detected before birth by prenatal ultrasound. A DNA test can be performed before birth to detect homozygosity, wherein two copies of the mutant gene are inherited, a lethal condition leading to stillbirths. Clinical features include megalocephaly, short limbs, prominent forehead, thoracolumbar kyphosis and mid-face hypoplasia. Complications like dental malocclusion, hydrocephalus and repeated otitis media can be observed. The risk of death in infancy is increased due to the likelihood of compression of the spinal cord with or without upper airway obstruction.