Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The function of the spinal accessory nerve is measured in the neurological examination. How the examination is administered varies by practitioner, but it frequently involves three components: inspection, range of motion testing, and strength testing.
During inspection, the examiner observes the sternocleidomastoid and trapezius muscles, looking for signs of lower motor neuron disease, such as muscle atrophy and fasciculation. A winged scapula may also be suggestive of abnormal spinal accessory nerve function, as described above.
In assessing range of motion, the examiner observes while the patient tilts and rotates the head, shrugs both shoulders, and abducts both arms. A winged scapula due to spinal accessory nerve damage will often be exaggerated on arm abduction.
Strength testing is similar to range of motion testing, except that the patient performs the actions against the examiner's resistance. The examiner measures sternocleidomastoid muscle function by asking the patient to turn his or her head against resistance. Simultaneously, the examiner observes the action of the contralateral sternocleidomastoid muscle. For example, if the patient turns his or her head to the right, the left sternocleidomastoid muscle normally will tighten.
To assess the strength of the trapezius muscle, the examiner asks the patient to shrug his or her shoulders against resistance. In patients with damage to the spinal accessory nerve, shoulder elevation will be diminished, and the patient will be incapable of raising the shoulders against the examiner's resistance.
In terms of diagnosis of HNPP measuring nerve conduction velocity may give an indication of the presence of the disease.Other methods via which to ascertain the diagnosis of hereditary neuropathy with liability to pressure palsy are:
- Family history
- Genetic test
- Physical exam(lack of ankle reflex)
A thorough medical history and physical examination, including a neurological examination, are the first steps in making a diagnosis. This alone may be sufficient to diagnose Bell's Palsy, in the absence of other findings. Additional investigations may be pursued, including blood tests such as ESR for inflammation, and blood sugar levels for diabetes. If other specific causes, such as sarcoidosis or Lyme disease are suspected, specific tests such as angiotensin converting enzyme levels, chest x-ray or Lyme titer may be pursued. If there is a history of trauma, or a tumour is suspected, a CT scan may be used.
There are several options of treatment when iatrogenic (i.e., caused by the surgeon) spinal accessory nerve damage is noted during surgery. For example, during a functional neck dissection that injures the spinal accessory nerve, injury prompts the surgeon to cautiously preserve branches of C2, C3, and C4 spinal nerves that provide supplemental innervation to the trapezius muscle. Alternatively, or in addition to intraoperative procedures, postoperative procedures can also help in recovering the function of a damaged spinal accessory nerve. For example, the Eden-Lange procedure, in which remaining functional shoulder muscles are surgically repositioned, may be useful for treating trapezius muscle palsy.
A skin biopsy for the measurement of epidermal nerve fiber density is an increasingly common technique for the diagnosis of small fiber peripheral neuropathy. Physicians can biopsy the skin with a 3-mm circular punch tool and immediately fix the specimen in 2% paraformaldehyde lysine-periodate or Zamboni's fixative. Specimens are sent to a specialized laboratory for processing and analysis where the small nerve fibers are quantified by a neuropathologist to obtain a diagnostic result.
This skin punch biopsy measurement technique is called intraepidermal nerve fiber density (IENFD). The following table describes the IENFD values in males and females of a 3 mm biopsy 10-cm above the lateral malleolus (above ankle outer side of leg). Any value measured below the 0.05 Quantile IENFD values per age span, is considered a reliable positive diagnosis for Small Fiber Peripheral Neuropathy.
Facial nerve paralysis may be divided into supranuclear and infranuclear lesions.
The diagnosis of small fiber neuropathy often requires ancillary testing. Nerve conduction studies and electromyography are commonly used to evaluate large myelinated sensory and motor nerve fibers, but are ineffective in diagnosing small fiber neuropathies.
Quantitative sensory testing (QST) assesses small fiber function by measuring temperature and vibratory sensation. Abnormal QST results can be attributed to dysfunction in the central nervous system. Furthermore, QST is limited by a patient’s subjective experience of pain sensation. Quantitative sudomotor axon reflex testing (QSART) measures sweating response at local body sites to evaluate the small nerve fibers that innervate sweat glands.
In addition to history and exam, it has been recommended to perform projectional radiography of the neck, chest, shoulder, and thoracic inlet to rule out structural abnormalities such as malunited or greenstick fractures. Computed tomography (CT) or magnetic resonance imaging (MRI) are rarely indicated, but may be useful to rule out certain diagnoses if suspected, such as neurofibromatosis-related injury, intervertebral disc disorder, radiculopathy, and tumors.
Evaluation of a child with torticollis begins with history taking to determine circumstances surrounding birth and any possibility of trauma or associated symptoms. Physical examination reveals decreased rotation and bending to the side opposite from the affected muscle. Some say that congenital cases more often involve the right side, but there is not complete agreement about this in published studies. Evaluation should include a thorough neurologic examination, and the possibility of associated conditions such as developmental dysplasia of the hip and clubfoot should be examined. Radiographs of the cervical spine should be obtained to rule out obvious bony abnormality, and MRI should be considered if there is concern about structural problems or other conditions.
Ultrasonography is another diagnostic tool that has high frequency sound waves used to visualize the muscle tissue. A colour histogram can also be used to determine cross sectional area and thickness of the muscle.
Evaluation by an optometrist or an ophthalmologist should be considered in children to ensure that the torticollis is not caused by vision problems (IV cranial nerve , nystagmus-associated "null position," etc.).
Differential diagnosis for torticollis involves
- Cranial nerve IV palsy
- Spasmus nutans
- Sandifer syndrome
- Myasthenia gravis
Cervical dystonia appearing in adulthood has been believed to be idiopathic in nature, as specific imaging techniques most often find no specific cause.
There is no current treatment, however management of hereditary neuropathy with liability to pressure palsy can be done via:
- Occupational therapist
- Ankle/foot orthosis
- Wrist splint (medicine)
- Avoid repetitive movements
Diagnosis requires a neurological examination. A neuroimaging exam can also be helpful for diagnosis. For example, an MRI can be used to discover the atrophy of the specific brain regions.
MMND can be differentially diagnosed from similar conditions like Fazio-Londe syndrome and amyotrophic lateral sclerosis, in that those two conditions don't involve sensorineural hearing loss, while MMND, Brown-Vialetto-Van Laere syndrome (BVVLS), Nathalie syndrome, and Boltshauser syndrome do. Nathalie syndrome does not involve lower cranial nerve symptoms, so it can be excluded if those are present. If there is evidence of lower motor neuron involvement, Boltshauser syndrome can be excluded. Finally, if there is a family history of the condition, then BVVLS is more likely, as MMND tends to be sporadic.
Since there is a variety of classifications of winged scapula, there is also more than one type of treatment. Massage Therapy is an effective initial approach to relax the damaged muscles. In more severe cases, Physical Therapy can help by strengthening affected and surrounding muscles. Physical therapy constitutes treatment options if there is weakness of the glenohumeral joint muscles, but if the muscles do not contract clinically and symptoms continue to be severe for more than 3–6 months, surgery may be the next choice. Surgery by fixation of the scapula to the rib cage can be done for those with isolated scapular winging. Some options are neurolysis (chordotomy), intercostal nerve transfer, scapulothoracic fusion, arthrodesis (scapulodesis), or scapulothoracis fixation without arthrodesis (scapulopexy).
Cranial nerve disease is an impaired functioning of one of the twelve cranial nerves. Although it could theoretically be considered a mononeuropathy, it is not considered as such under MeSH.
It is possible for a disorder of more than one cranial nerve to occur at the same time, if a trauma occurs at a location where many cranial nerves run together, such as the jugular fossa. A brainstem lesion could also cause impaired functioning of multiple cranial nerves, but this condition would likely also be accompanied by distal motor impairment.
A neurological examination can test the functioning of individual cranial nerves, and detect specific impairments.
Initially, the condition is treated with physical therapies, such as stretching to release tightness, strengthening exercises to improve muscular balance, and handling to stimulate symmetry. A TOT collar is sometimes applied. Early initiation of treatment is very important for full recovery and to decrease chance of relapse.
Individuals with a history of high blood pressure, diabetes, and smoking are most susceptible to PION as they have a compromised system of blood vessel autoregulation. Hence, extra efforts may need to be taken for them in the form of careful or staged surgery or the controlling the anemia from blood loss (by administration of blood transfusions), and the careful maintenance of their blood pressure.
People with MMND become progressively more weak with time. Generally, affected individuals survive up to 30 years after they are diagnosed.
The facial nerve is the seventh of 12 cranial nerves. This cranial nerve controls the muscles in the face. Facial nerve palsy is more abundant in older adults than in children and is said to affect 15-40 out of 100,000 people per year. This disease comes in many forms which include congenital, infectious, traumatic, neoplastic, or idiopathic. The most common cause of this cranial nerve damage is Bell's palsy (idiopathic facial palsy) which is a paralysis of the facial nerve. Although Bell's palsy is more prominent in adults it seems to be found in those younger than 20 or older than 60 years of age. Bell's Palsy is thought to occur by an infection of the herpes virus which may cause demyelination and has been found in patients with facial nerve palsy. Symptoms include flattening of the forehead, sagging of the eyebrow, and difficulty closing the eye and the mouth on the side of the face that is affected. The inability to close the mouth causes problems in feeding and speech. It also causes lack of taste, acrimation, and sialorrhea.
The use of steroids can help in the treatment of Bell's Palsy. If in the early stages, steroids can increase the likelihood of a full recovery. This treatment is used mainly in adults. The use of steroids in children has not been proven to work because they seem to recover completely with or without them. Children also tend to have better recovery rates than older adults. Recovery rate also depends on the cause of the facial nerve palsy (e.g. infections, perinatal injury, congenital dysplastic). If the palsy is more severe patients should seek steroids or surgical procedures. Facial nerve palsy may be the indication of a severe condition and when diagnosed a full clinical history and examination are recommended.
Although rare, facial nerve palsy has also been found in patients with HIV seroconversion. Symptoms found include headaches (bitemporal or occipital), the inability to close the eyes or mouth, and may cause the reduction of taste. Few cases of bilateral facial nerve palsy have been reported and is said to only effect 1 in every 5 million per year.
The American College of Rheumatology has defined a combination of physical symptoms and inflammatory changes to diagnose giant cell arteritis.
Bell's palsy is a diagnosis of exclusion, meaning it is diagnosed by elimination of other reasonable possibilities. By definition, no specific cause can be determined. There are no routine lab or imaging tests required to make the diagnosis. The degree of nerve damage can be assessed using the House-Brackmann score.
One study found that 45% of patients are not referred to a specialist, which suggests that Bell’s palsy is considered by physicians to be a straightforward diagnosis that is easy to manage.
Other conditions that can cause similar symptoms include: herpes zoster, Lyme disease, sarcoidosis, stroke, and brain tumors.
Onset of first symptom has been reported between 1–12 years, with a mean age of onset at 8 years. Clinical course can be divided into early (< 6 yrs age, predominance of respiratory symptoms) and late course (6–20 years of age, predominance of motor symptoms on superior limbs). Progression to involve other cranial nerve muscles occurs over a period of months or years. In the Gomez review facial nerve was affected in all cases while hypoglossal nerve was involved in all except one case. Other cranial nerves involved were vagus, trigeminal, spinal accessory nerve, abducent, occulomotor and glossopharyngeal in this order. Corticospinal tract signs were found in 2 of the 14 patients.
The disease may progress to patient's death in a period as short as 9 months or may have a slow evolution or may show plateaus. Post mortem examination of cases have found depletion of nerve cells in the nuclei of cranial nerves. The histologic alterations found in patient with Fazio–Londe disease were identical to those seen in infantile-onset spinal muscular atrophy.
Strength may improve with administration of cholinesterase inhibitors.
The ulnar collateral ligament is an important stabilizer of the thumb. Thumb instability resulting from disruption of the UCL profoundly impairs the overall function of the involved hand. Because of this, it is critical that these injuries receive appropriate attention and treatment.
Most gamekeeper's thumb injuries are treated by simply immobilizing the joint in a thumb spica splint or a modified wrist splint and allowing the ligament to heal. However, near total or total tears of the UCL may require surgery to achieve a satisfactory repair, especially if accompanied by a Stener lesion.
The efficacy of acupuncture remains unknown because the available studies are of low quality (poor primary study design or inadequate reporting practices). There is very tentative evidence for hyperbaric oxygen therapy in severe disease.
A Stener lesion is a type of traumatic injury to the thumb. It occurs when the aponeurosis of the adductor pollicis muscle becomes interposed between the ruptured ulnar collateral ligament (UCL) of the thumb and its site of insertion at the base of the proximal phalanx. No longer in contact with its insertion site, the UCL cannot spontaneously heal.
Fazio–Londe disease (FLD), also called progressive bulbar palsy of childhood, is a very rare inherited motor neuron disease of children and young adults and is characterized by progressive paralysis of muscles innervated by cranial nerves.
Adult presentation in diastematomyelia is unusual. With modern imaging techniques, various types of spinal dysraphism are being diagnosed in adults with increasing frequency. The commonest location of the lesion is at first to third lumbar vertebrae. Lumbosacral adult diastematomyelia is even rarer. Bony malformations and dysplasias are generally recognized on plain x-rays. MRI scanning is often the first choice of screening and diagnosis. MRI generally give adequate analysis of the spinal cord deformities although it has some limitations in giving detailed bone anatomy. Combined myelographic and post-myelographic CT scan is the most effective diagnostic tool in demonstrating the detailed bone, intradural and extradural pathological anatomy of the affected and adjacent spinal canal levels and of the bony spur.
Prenatal ultrasound diagnosis of this anomaly is usually possible in the early to mid third-trimester. An extra posterior echogenic focus between the fetal spinal laminae is seen with splaying of the posterior elements, thus allowing for early surgical intervention and have a favorable prognosis. Prenate ultrasound could also detect whether the diastematomyelia is isolated, with the skin intact or association with any serious neural tube defects. Progressive neurological lesions may result from the "tethering cord syndrome" (fixation of the spinal cord) by the diastematomyelia phenomenon or any of the associated disorders such as myelodysplasia, dysraphia of the spinal cord.