Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
A brain biopsy will reveal the presence of infection by pathogenic amoebas. In GAE, these present as general inflammation and sparse granules. On microscopic examination, infiltrates of amoebic cysts and/or trophozoites will be visible.
GAE, in general, must be treated by killing the pathogenic amoebas which cause it.
In "Acanthamoeba" infections, the diagnosis can be made from microscopic examination of stained smears of biopsy specimens (brain tissue, skin, cornea) or of corneal scrapings, which may detect trophozoites and cysts. Cultivation of the causal organism, and its identification by direct immunofluorescent antibody, may also prove useful. Laboratory workers and physicians often mistake the organisms on wet mount for monocytes and a diagnosis of viral meningitis is mistakenly given if the organisms are not motile. Heating a copper penny with an alcohol lamp and placing it on the wet mount slide will activate sluggish trophozoites and more rapidly make the diagnosis. If the person performing the spinal tap rapidly looks at the heated wet mount slide the trophozoites can be seen to swarm while monocytes do not.
"N. fowleri" can be grown in several kinds of liquid axenic media or on non-nutrient agar plates coated with bacteria. "Escherichia coli" can be used to overlay the non-nutrient agar plate and a drop of cerebrospinal fluid sediment is added to it. Plates are then incubated at 37 °C and checked daily for clearing of the agar in thin tracks, which indicate the trophozoites have fed on the bacteria. Detection in water is performed by centrifuging a water sample with "E. coli" added, then applying the pellet to a non-nutrient agar plate. After several days, the plate is microscopically inspected and "Naegleria" cysts are identified by their morphology. Final confirmation of the species' identity can be performed by various molecular or biochemical methods.
Confirmation of "Naegleria" presence can be done by a so-called flagellation test, where the organism is exposed to a hypotonic environment (distilled water). "Naegleria", in contrast to other amoebae, differentiates within two hours into the flagellate state.
Pathogenicity can be further confirmed by exposure to high temperature (42 °C): "Naegleria fowleri" is able to grow at this temperature, but the nonpathogenic "Naegleria gruberi" is not.
Eye and skin infections caused by "Acanthamoeba spp." are generally treatable. Topical use of 0.1% propamidine isethionate (Brolene) plus neomycin-polymyxin B-gramicidin ophthalmic solution has been a successful approach; keratoplasty is often necessary in severe infections. Although most cases of brain (CNS) infection with "Acanthamoeba" have resulted in death, patients have recovered from the infection with proper treatment.
Michael Beach, a recreational waterborne illness specialist for the Centers for Disease Control and Prevention, stated in remarks to the Associated Press that wearing of nose-clips to prevent insufflation of contaminated water would be effective protection against contracting PAM, noting that "You'd have to have water going way up in your nose to begin with".
Advice stated in the press release from Taiwan's Centers for Disease Control recommended people prevent fresh water from entering the nostrils and avoid putting their heads down into fresh water or stirring mud in the water with feet. When starting to suffer from fever, headache, nausea, or vomiting subsequent to any kind of exposure to fresh water even if the belief in none of the fresh water has traveled through nostrils, people with such conditions should be carried to hospital quickly and make sure doctors are well-informed about the history of exposure to fresh water.
Animal pathogens exist as facultative parasites. They are an exceptionally rare cause of meningoencephalitis.
clinical diagnosis include recurrent or recent herpes infection fever, headache, mental symptom, convulsion, disturbance of consciousness, focal signs.
CSF ,EEG, CT, MRI are responsive to specific antivirus agent.
Definite diagnosis – besides the above, the followings are needed
CSF: HSV-antigen,HSV-Antibody, brain biopsy or pathology: Cowdry in intranuclear
CSF: the DNA of the HSV(PCR)
cerebral tissue or specimen of the CSF:HSV
except other viral encephalitis
Cerebrospinal fluid (CSF) analysis shows a large number of white blood cells. Typically small mature lymphocytes are the majority of cells seen, with monocytes and neutrophils making up the rest. Definitive diagnosis is based on histopathology, either a brain biopsy or post-mortem evaluation (necropsy). A CT scan or MRI will show patchy, diffuse, or multifocal lesions. For a number of years, the basic treatment was some type of corticosteroid in combination with one or more immunosuppressive drugs, typically cytosine arabinoside and/or cyclosporine or other medications such as azathioprine, cyclophosphamide, or procarbazine, of which were usually added one at a time to the corticosteroid until a successful combination was found. There is evidence that treatment with radiation therapy for focal GME provides the longest periods of remission.
Antiviral therapy: as early as possible
10~15mg/kg every 8 hours for 14~21d
5~10mg/kg every 12hours for 14~21d
immune therapy: interferon
symptomatic therapy
High fever: physical regulation of body temperature
Seizure: antiepileptic drugs
high intracranial pressure-20%mannitol
Infections: antibiotic drugs
People should only be diagnosed with encephalitis if they have a decreased or altered level of consciousness, lethargy, or personality change for at least twenty-four hours without any other explainable cause. Diagnosing encephalitis is done via a variety of tests:
- Brain scan, done by MRI, can determine inflammation and differentiate from other possible causes.
- EEG, in monitoring brain activity, encephalitis will produce abnormal signal.
- Lumbar puncture (spinal tap), this helps determine via a test using the cerebral-spinal fluid, obtained from the lumbar region.
- Blood test
- Urine analysis
- Polymerase chain reaction (PCR) testing of the cerebrospinal fluid, to detect the presence of viral DNA which is a sign of viral encephalitis.
Identification of poor prognostic factors include thrombocytopenia, cerebral edema, status epilepticus, and thrombocytopenia. In contrast, a normal encephalogram at the early stages of diagnosis is associated with high rates of survival.
EEG: Mostly nonspecific slowing and epileptiform activity arising from temporal lobes.
The diagnosis of viral meningitis is made by clinical history, physical exam, and several diagnostic tests. Most importantly, cerebrospinal fluid (CSF) is collected via lumbar puncture (also known as spinal tap). This fluid, which normally surrounds the brain and spinal cord, is then analyzed for signs of infection. CSF findings that suggest a viral cause of meningitis include an elevated white blood cell count (usually 10-100 cells/µL) with a lymphocytic predominance in combination with a normal glucose level. Increasingly, cerebrospinal fluid PCR tests have become especially useful for diagnosing viral meningitis, with an estimated sensitivity of 95-100%. Additionally, samples from the stool, urine, blood and throat can also help to identify viral meningitis.
In certain cases, a CT scan of the head should be done before a lumbar puncture such as in those with poor immune function or those with increased intracranial pressure.
Examination of cerebrospinal fluid (CSF) shows elevated numbers of lymphocytes (but usually < 100 cells/µl); elevated CSF protein (but usually <1.5 g/l), normal glucose, elevated IgG index and oligoclonal bands. Patients with antibodies to voltage-gated potassium channels may have a completely normal CSF examination.
"Balamuthia" infection is a cutaneous condition resulting from "Balamuthia" that may result in various skin lesions.
"Balamuthia mandrillarisis" a free-living amoeba (a single-celled living organism) found in the environment. It is one of the causes of granulomatous amoebic encephalitis (GAE), a serious infection of the brain and spinal cord. "Balamuthia" is thought to enter the body when soil containing it comes in contact with skin wounds and cuts, or when dust containing it is breathed in or gets in the mouth. The "Balamuthia" amoebae can then travel to the brain through the blood stream and cause GAE. GAE is a very rare disease that is usually fatal.
Scientists at the Centers for Disease Control and Prevention (CDC) first discovered "Balamuthia mandrillaris" in 1986. The amoeba was found in the brain of a dead mandrill. After extensive research, "B. mandrillaris" was declared a new species in 1993. Since then, more than 200 cases of "Balamuthia" infection have been diagnosed worldwide, with at least 70 cases reported in the United States. Little is known at this time about how a person becomes infected.
It has been proposed that viral meningitis might lead to inflammatory injury of the vertebral artery wall.
The Meningitis Research Foundation is conducting a study to see if new genomic techniques can the speed, accuracy and cost of diagnosing meningitis in children in the UK. The research team will develop a new method to be used for the diagnosis of meningitis, analysing the genetic material of microorganisms found in CSF (cerebrospinal fluid). The new method will first be developed using CSF samples where the microorganism is known, but then will be applied to CSF samples where the microorganism is unknown (estimated at around 40%) to try and identify a cause.
Sappinia amoebic encephalitis (SAE) is the name for amoebic encephalitis caused by species of "Sappinia".
The causative organism was originally identified as "Sappinia diploidea", but is now considered to be "Sappinia pedata".
It has been treated with azithromycin, pentamidine, itraconazole, and flucytosine.
The diagnosis is considered when a child with congenital rubella develops progressive spasticity, ataxia, mental deterioration, and seizures. Testing involves at least CSF examination and serology. Elevated CSF total protein and globulin and elevated rubella antibody titers in CSF and serum occur. CT may show ventricular enlargement due to cerebellar atrophy and white matter disease. Brain biopsy may be necessary to exclude other causes of encephalitis or encephalopathy. Rubella virus cannot usually be recovered by viral culture or immunohistologic testing.
Granulomatous meningoencephalitis (GME) is an inflammatory disease of the central nervous system (CNS) of dogs and, rarely, cats. It is a form of meningoencephalitis. GME is likely second only to encephalitis caused by "canine distemper virus" as the most common cause of inflammatory disease of the canine CNS. The disease is more common in female toy dogs of young and middle age. It has a rapid onset. The lesions of GME exist mainly in the white matter of the cerebrum, brainstem, cerebellum, and spinal cord. The cause is only known to be noninfectious and is considered at this time to be idiopathic. Because lesions resemble those seen in allergic meningoencephalitis, GME is thought to have an immune-mediated cause, but it is also thought that the disease may be based on an abnormal response to an infectious agent. One study searched for viral DNA from "canine herpesvirus", "canine adenovirus", and "canine parvovirus" in brain tissue from dogs with GME, necrotizing meningoencephalitis, and necrotizing leukoencephalitis (see below for the latter two conditions), but failed to find any.
There have been several proposed diagnostic criteria for Encephalitis Lethargica. One, which has been widely accepted, includes an acute or subacute encephalitic illness where all other known causes of encephalitis have been excluded. Another diagnostic criterion, suggested more recently,says that the diagnosis of Encephalitis Lethargica "may be considered if the patient’s condition cannot be attributed to any other known neurological condition and that they show the following signs: influenza-like signs; hypersomnolence (hypersomnia), wakeability, opthalmoplegia (paralysis of the muscles that control the movement of the eye), and psychiatric changes."
A Zika virus infection might be suspected if symptoms are present and an individual has traveled to an area with known Zika virus transmission. Zika virus can only be confirmed by a laboratory test of body fluids, such as urine or saliva, or by blood test.
Laboratory blood tests can identify evidence of chikungunya or other similar viruses such as dengue and Zika. Blood test may confirm the presence of IgM and IgG anti-chikungunya antibodies. IgM antibodies are highest 3 to 5 weeks after the beginning of symptoms and will continue be present for about 2 months.
The disease is incurable once manifested, so there is no specific drug therapy for TBE. Symptomatic brain damage requires hospitalization and supportive care based on syndrome severity. Anti-inflammatory drugs, such as corticosteroids, may be considered under specific circumstances for symptomatic relief. Tracheal intubation and respiratory support may be necessary.
Prevention includes non-specific (tick-bite prevention, tick checks) and specific prophylaxis in the form of a vaccine. TBE immunoglobulin is no longer used. Tick-borne encephalitis vaccine is very effective and available in many disease endemic areas and in travel clinics.
To date, no treatment for IBD is known. Snakes diagnosed with or suspected of having IBD should be euthanized because progression and transmission of the virus is both very rapid and destructive. All newly acquired snakes should, therefore, be quarantined for at least 3 and preferably 6 months before being introduced into established collections. The recommended period of quarantine for any wild-caught boa or python is at least 4–6 months.
The primary route of transmission has not yet been identified, but direct contact may result in its transmission to developing embryos in viviparous species and eggs in oviparous species. Venereal transmission is also indicated as a possibility. The snake mite, "Ophionyssus natricis", has been implicated as a possible vector for the virus, since mite infestations are commonly seen in epizootics of IBD and in captive specimens of these snakes. Mites are sometimes very difficult to eradicate due to their resistance to certain toxins used to eliminate them.
Permethrin is known to be effective against mite infestations, but should be used with great caution and only in small quantities due to their toxic nature. Also, several nonchemical substances may be just as effective. These biological agents are sprayed onto the infested animal and desiccate the mites, rendering them unable to lay their eggs or consume blood beneath the scales of their host. The incubation period for mite eggs is thought to be about 10–14 days, so the treatment should be repeated after 10 days to ensure that any eggs that hatch or larvae that develop into nymphs are also quickly eliminated from the host before reaching sexual maturity and able to repeat their reproduction cycle.