Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Symptoms-based methods of fertility awareness may be used to detect ovulation or to determine that cycles are anovulatory. Charting of the menstrual cycle may be done by hand, or with the aid of various fertility monitors. Records of one of the primary fertility awareness signs—basal body temperature—can detect ovulation by identifying the shift in temperature which takes place after ovulation. It is said to be the most reliable way of confirming whether ovulation has occurred.
Women may also use ovulation predictor kits (OPKs) which detect the increase in luteinizing hormone (LH) levels that usually indicates imminent ovulation. For some women, these devices do not detect the LH surge, or high levels of LH are a poor predictor of ovulation; this is particularly common in women with PCOS. In such cases, OPKs and those fertility monitors which are based on LH may show false results, with an increased number of false positives or false negatives. Dr Freundl from the University of Heidelberg suggests that tests which use LH as a reference often lack sensitivity and specificity.
Perimenopause is a natural stage of life. It is not a disease or a disorder. Therefore, it does not automatically require any kind of medical treatment. However, in those cases where the physical, mental, and emotional effects of perimenopause are strong enough that they significantly disrupt the life of the woman experiencing them, palliative medical therapy may sometimes be appropriate.
The European Society of Human Reproduction and Embryology (ESHRE) notes that the aim of ovulation induction should be mono-ovulation and not over-stimulation of the ovaries . The risks associated with multiple pregnancy are much higher than singleton pregnancy; incidences of perinatal death are seven times higher in triplet births and five times higher in twin births than the risks associated with a singleton pregnancy. It is therefore important to adapt the treatment to each individual patient.
Women with polycystic ovary syndrome may be particularly at risk. Multiple pregnancy occurs in approximately 15-20% of cases following cycles induced with gonadotrophins such as hMG and FSH induced ovulations.
During ovulation induction, it is recommended to start at a low dose and monitor the ovarian response with vaginal ultrasound, including discernment of the number of developing follicles. A cycle with supernumerary follicles is usually defined as one where there are more than two follicles >16 mm in diameter. It is generally recommended to have such cycles cancelled because of the risk of multiple pregnancy. In cancelled cycles, the woman or couple should be warned of the risks in case of supernumerary follicles, and should avoid sexual intercourse or use contraception until the next menstruation. Induction of final maturation (such as done with hCG) may need to be withheld because of increased risk of ovarian hyperstimulation syndrome(OHSS). The starting dose of the inducing drug should be reduced in the next cycle.
Alternatives to cancelling a cycle are mainly:
- Aspiration of supernumerary follicles until one or two remain.
- Converting the protocol to IVF treatment with embryo transfer of up to two embryos only.
- Selective fetal reduction. This alternative confers a high risk of complications.
- Proceeding with any multiple pregnancy without fetal reduction, with the ensuing risk of complications. This alternative is not recommended.
The term "postmenopausal" describes women who have not experienced any menstrual flow for a minimum of 12 months, assuming that they have a uterus and are not pregnant or lactating. In women without a uterus, menopause or postmenopause can be identified by a blood test showing a very high FSH level. Thus postmenopause is the time in a woman's life that takes place after her last period or, more accurately, after the point when her ovaries become inactive.
The reason for this delay in declaring postmenopause is because periods are usually erratic at this time of life. Therefore, a reasonably long stretch of time is necessary to be sure that the cycling has ceased. At this point a woman is considered infertile; however, the possibility of becoming pregnant has usually been very low (but not quite zero) for a number of years before this point is reached.
A woman's reproductive hormone levels continue to drop and fluctuate for some time into post-menopause, so hormone withdrawal effects such as hot flashes may take several years to disappear.
A period-like flow during postmenopause, even spotting, may be a sign of endometrial cancer.
Secondary amenorrhea's most common and most easily diagnosable causes are pregnancy, thyroid disease, and hyperprolactinemia. A pregnancy test is a common first step for diagnosis. Hyperprolactinemia, characterized by high levels of the hormone prolactin, is often associated with a pituitary tumor. A dopamine agonist can often help relieve symptoms. The subsiding of the causal syndrome is usually enough to restore menses after a few months. Secondary amenorrhea may also be caused by outflow tract obstruction, often related to Asherman's Syndrome. Polycystic ovary syndrome can cause secondary amenorrhea, although the link between the two is not well understood. Ovarian failure related to early onset menopause can cause secondary amenorrhea, and although the condition can usually be treated, it is not always reversible. Secondary amenorrhea is also caused by stress, extreme weight loss, or excessive exercise. Young athletes are particularly vulnerable, although normal menses usually return with healthy body weight. Causes of secondary amenorrhea can also result in primary amenorrhea, especially if present before onset of menarche.
Exercise amenorrhoea is a diagnosis of exclusion. Girls who exercise at a young age may have primary amenorrhoea. The differential diagnosis are androgen excess, pituitary tumors (rare), tumors of the third ventricle (rare) or other conditions leading to chronic malnutrition. Diet history and bone density investigations should also be done to determine if female athlete triad is present.
Primary amenorrhoea can be diagnosed in female children by age 14 if no secondary sex characteristics, such as enlarged breasts and body hair, are present. In the absence of secondary sex characteristics, the most common cause of amenorrhoea is low levels of FSH and LH caused by a delay in puberty. Gonadal dysgenesis, often associated with Turner's Syndrome, or premature ovarian failure may also be to blame. If secondary sex characteristics are present, but menstruation is not, primary amenorrhoea can be diagnosed by age 16. A reason for this occurrence may be that a person phenotypically female but genetically male, a situation known as androgen insensitivity syndrome. If undescended testes are present, they are often removed after puberty (~21 years of age) due to the increased risk of testicular cancer. In the absence of undescended testes, an MRI can be used to determine whether or not a uterus is present. Müllerian agenesis causes around 15% of primary amenorrhoea cases. If a uterus is present, outflow track obstruction may be to blame for primary amenorrhoea.
Low testosterone can be identified through a simple blood test performed by a laboratory, ordered by a health care provider. Blood for the test must be taken in the morning hours, when levels are highest, as levels can drop by as much as 13% during the day and all normal reference ranges are based on morning levels. However, low testosterone in the absence of any symptoms does not clearly need to be treated.
Normal total testosterone levels depend on the man's age but generally range from 240–950 ng/dL (nanograms per deciliter) or 8.3-32.9 nmol/L (nanomoles per liter). Some men with normal total testosterone have low free or bioavailable testosterone levels which could still account for their symptoms. Men with low serum testosterone levels should have other hormones checked, particularly luteinizing hormone to help determine why their testosterone levels are low and help choose the most appropriate treatment (most notably, testosterone is usually not appropriate for secondary or tertiary forms of male hypogonadism, in which the LH levels are usually reduced).
Treatment is often prescribed for total testosterone levels below 230 ng/dL with symptoms. If the serum total testosterone level is between 230 and 350 ng/dL, free or bioavailable testosterone should be checked as they are frequently low when the total is marginal.
The standard range given is based off widely varying ages and, given that testosterone levels naturally decrease as humans age, age-group specific averages should be taken into consideration when discussing treatment between doctor and patient. In men, testosterone falls approximately 1 to 3 percent each year.
- Blood testing
A position statement by the Endocrine Society expressed dissatisfaction with most assays for total, free, and bioavailable testosterone. In particular, research has questioned the validity of commonly administered assays of free testosterone by radioimmunoassay. The free androgen index, essentially a calculation based on total testosterone and sex hormone-binding globulin levels, has been found to be the worst predictor of free testosterone levels and should not be used. Measurement by equilibrium dialysis or mass spectroscopy is generally required for accurately results, particularly for free testosterone which is present normal in such small concentrations.
Testing serum LH and FSH levels are often used to assess hypogonadism in women, particularly when menopause is believed to be happening. These levels change during a woman's normal menstrual cycle, so the history of having ceased menstruation coupled with high levels aids the diagnosis of being menopausal. Commonly, the post-menopausal woman is not called hypogonadal if she is of typical menopausal age. Contrast with a young woman or teen, who would have hypogonadism rather than menopause. This is because hypogonadism is an abnormality, whereas menopause is a normal change in hormone levels. In any case, the LH and FSH levels will rise in cases of primary hypogonadism or menopause, while they will be low in women with secondary or tertiary hypogonadism.
Hypogonadism is often discovered during evaluation of delayed puberty, but ordinary delay, which eventually results in normal pubertal development, wherein reproductive function is termed constitutional delay. It may be discovered during an infertility evaluation in either men or women.
Some other blood tests are suggestive but not diagnostic. The ratio of LH (Luteinizing hormone) to FSH (Follicle-stimulating hormone), when measured in international units, is elevated in women with PCOS. Common cut-offs to designate abnormally high LH/FSH ratios are 2:1 or 3:1 as tested on Day 3 of the menstrual cycle. The pattern is not very sensitive; a ratio of 2:1 or higher was present in less than 50% of women with PCOS in one study. There are often low levels of sex hormone-binding globulin, in particular among obese or overweight women.
Anti-Müllerian hormone (AMH) is increased in PCOS, and may become part of its diagnostic criteria.
Exercise amenorrhoea can be managed by eating a diet rich in calories and by decreasing the duration and intensity of exercise for at least 12 months. Amenorrhea usually persists and may take over 6 months to reverse .
A doctor will test for prolactin blood levels in women with unexplained milk secretion (galactorrhea) or irregular menses or infertility, and in men with impaired sexual function and milk secretion. If prolactin is high, a doctor will test thyroid function and ask first about other conditions and medications known to raise prolactin secretion. While a plain X-ray of the bones surrounding the pituitary may reveal the presence of a large macro-adenoma, the small micro-adenoma will not be apparent. Magnetic resonance imaging (MRI) is the most sensitive test for detecting pituitary tumours and determining their size. MRI scans may be repeated periodically to assess tumour progression and the effects of therapy. Computed Tomography (CT scan) also gives an image of the pituitary, but it is less sensitive than the MRI.
In addition to assessing the size of the pituitary tumour, doctors also look for damage to surrounding tissues, and perform tests to assess whether production of other pituitary hormones is normal. Depending on the size of the tumour, the doctor may request an eye exam with measurement of visual fields.
The hormone prolactin is downregulated by dopamine and is upregulated by oestrogen. A falsely-high measurement may occur due to the presence of the biologically-inactive macroprolactin in the serum. This can show up as high prolactin in some types of tests, but is asymptomatic.
Other causes of irregular or absent menstruation and hirsutism, such as hypothyroidism, congenital adrenal hyperplasia (21-hydroxylase deficiency), Cushing's syndrome, hyperprolactinemia, androgen secreting neoplasms, and other pituitary or adrenal disorders, should be investigated.
Early puberty is believed to put girls at higher risk of sexual abuse, unrelated to pedophilia because the child has developed secondary sex characteristics; however, a causal relationship is, as yet, inconclusive. Early puberty also puts girls at a higher risk for teasing or bullying, mental health disorders and short stature as adults. Helping children control their weight is suggested to help delay puberty. Early puberty additionally puts girls at a "far greater" risk for breast cancer later in life. Girls as young as 8 are increasingly starting to menstruate, develop breasts and grow pubic and underarm hair; these "biological milestones" typically occurred only at 13 or older in the past. African-American girls are especially prone to early puberty. There are theories debating the trend of early puberty, but the exact causes are not known.
Though boys face fewer problems upon early puberty than girls, early puberty is not always positive for boys; early sexual maturation in boys can be accompanied by increased aggressiveness due to the surge of hormones that affect them. Because they appear older than their peers, pubescent boys may face increased social pressure to conform to adult norms; society may view them as more emotionally advanced, although their cognitive and social development may lag behind their appearance. Studies have shown that early maturing boys are more likely to be sexually active and are more likely to participate in risky behaviours.
Female patients may show symptoms of hyperandrogenism in their early life, but physicians become more concerned when the patient is in her late teens or older.
Hyperandrogenism is most often diagnosed by checking for signs of hirsutism according to a standardized method that scores the range of excess hair growth.
Checking medical history and a physical examination of symptoms are used for an initial diagnosis. Patient history assessed includes age at thelarche, adrenarche, and menarche; patterns of menstruation; obesity; reproductive history; and the start and advancement of hyperandrogenism symptoms. Patterns of menstruation are examined since irregular patterns may appear with hirsutism. Family history is also assessed for occurrences of hyperandrogenism symptoms or obesity in other family members.
A laboratory test can also be done on the patient to evaluate levels of FSH, LH, DHEAS, prolactin, 17OHP, and total and free testosterone in the patient's blood. Abnormally high levels of any of these hormones help in diagnosing hyperandrogenism.
Once a diagnosis of dysmenorrhea is made, further workup is required to search for any secondary underlying cause of it, in order to be able to treat it specifically and to avoid the aggravation of a perhaps serious underlying cause.
Further work-up includes a specific medical history of symptoms and menstrual cycles and a pelvic exam. Based on results from these, additional exams and tests may be motivated, such as:
- Laboratory tests
- Gynecologic ultrasonography
- Laparoscopy may be required.
The diagnosis of dysmenorrhea is usually made simply on a medical history of menstrual pain that interferes with daily activities. However, there is no universally accepted gold standard technique for quantifying the severity of menstrual pains. Yet, there are quantification models, called "menstrual symptometrics", that can be used to estimate the severity of menstrual pains as well as correlate them with pain in other parts of the body, menstrual bleeding and degree of interference with daily activities.
Treatment is usually medication with dopamine agonists such as cabergoline, bromocriptine (often preferred when pregnancy is possible), and less frequently lisuride. A new drug in use is norprolac with the active ingredient quinagolide. Terguride is also used.
"Vitex agnus-castus" extract can be tried in cases of mild hyperprolactinaemia.
Since risk factors are not known and vary among individuals with hyperandrogegism, there is no sure method to prevent this medical condition. Therefore, more longterm studies are needed first to find a cause for the condition before being able to find a sufficient method of prevention.
However, there are a few things that can help avoid long-term medical issues related to hyperandrogenism like PCOS. Getting checked by a medical professional for hyperandrogenism; especially if one has a family history of the condition, irregular periods, or diabetes; can be beneficial. Watching your weight and diet is also important in decreasing your chances, especially in obese females, since continued exercise and maintaining a healthy diet leads to an improved menstrual cycle as well as to decreased insulin levels and androgen concentrations.
Studies indicate that breast development in girls and the appearance of pubic hair in girls and boys are starting earlier than in previous generations. As a result, "early puberty" in children, particularly girls, as young as 9 and 10 is no longer considered abnormal, although it may be upsetting to parents and can be harmful to children who mature physically at a time when they are immature mentally.
No age reliably separates normal from abnormal processes in children, but the following age thresholds for evaluation are thought to minimize the risk of missing a significant medical problem:
- Breast development in boys before appearance of pubic hair or testicular enlargement,
- Pubic hair or genital enlargement (gonadarche) in boys with onset before 9.5 years,
- Pubic hair (pubarche) before 8 or breast development (thelarche) in girls with onset before 7 years,
- Menstruation (menarche) in girls before 10 years.
Medical evaluation is sometimes necessary to recognize the few children with serious conditions from the majority who have entered puberty early but are still medically normal. Early sexual development warrants evaluation because it may:
- induce early bone maturation and reduce eventual adult height,
- indicate the presence of a tumour or other serious problem,
- cause the child, particularly a girl, to become an object of adult sexual interest.
The most common pain scale for quantification of endometriosis-related pain is the visual analogue scale (VAS); VAS and numerical rating scale (NRS) were the best adapted pain scales for pain measurement in endometriosis. For research purposes, and for more detailed pain measurement in clinical practice, VAS or NRS for each type of typical pain related to endometriosis (dysmenorrhea, deep dyspareunia and non-menstrual chronic pelvic pain), combined with the clinical global impression (CGI) and a quality of life scale, are used.
Women charting with some form of fertility awareness may find mittelschmerz to be a helpful secondary sign in detecting ovulation. Because normal sperm life is up to five days, however, mittelschmerz alone does not provide sufficient advance warning to avoid pregnancy. Because other causes of minor abdominal pain are common, mittelschmerz alone also cannot be used to confirm the beginning of the post-ovulatory infertile period.
An area of research is the search for endometriosis markers.
In 2010 essentially all proposed biomarkers for endometriosis were of unclear medical use, although some appear to be promising. The one biomarker that has been in use over the last 20 years is CA-125. A 2016 review found that in those with symptoms of endometriosis and once ovarian cancer has been ruled out, a positive CA-125 may confirm the diagnosis. Its performance in ruling out endometriosis; however, is low. CA-125 levels appear to fall during endometriosis treatment, but has not shown a correlation with disease response.
Another review in 2011 identified several putative biomarkers upon biopsy, including findings of small sensory nerve fibers or defectively expressed β3 integrin subunit. It has been postulated a future diagnostic tool for endometriosis will consist of a panel of several specific and sensitive biomarkers, including both substance concentrations and genetic predisposition.
Diagnosis of mittelschmerz is generally made if a woman is mid-cycle and a pelvic examination shows no abnormalities. If the pain is prolonged and/or severe, other diagnostic procedures such as an abdominal ultrasound may be performed to rule out other causes of abdominal pain.
The pain of mittelschmerz is sometimes mistaken for appendicitis and is one of the differential diagnoses for appendicitis in women of child-bearing age.
Excessive menstruation between puberty and 19 years of age is called puberty menorrhagia. Excessive menstruation is defined as bleeding over 80 ml per menstrual period or lasting more than 7 days. The most common cause for puberty menorrhagia is dysfunctional uterine bleeding. The other reasons are idiopathic thrombocytopenic purpura, hypothyroidism, genital tuberculosis, polycystic ovarian disease, leukemia and coagulation disorders. The most common physiological reason for puberty menorrhagia is the immaturity of hypothalamic-pituitary-ovarian axis, leading to inadequate positive feedback and sustained high estrogen levels. Most patients present with anemia due to excessive blood loss.
The patient is assessed with a thorough medical history, physical examination (to look for features of anemia), gynaecological examination (to rule out local causes) and laboratory investigations (to rule out coagulopathies and malignancy). It is mandatory to exclude pregnancy. The treatment is determined based on the cause of menorrhagia. In case of puberty menorrhagia due to immaturity of hypothalamic axis, hormonal therapy is beneficial. Treatment for blood loss should be done simultaneously with iron therapy in mild to moderate blood loss and blood transfusion in severe blood loss.