Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The PESI and sPESI scoring tools can estimate mortality of patients. The Geneva prediction rules and Wells criteria are used to calculate a pre-test probability of patients to predict who has a pulmonary embolism. These scores are tools to be used with clinical judgment in deciding diagnostic testing and types of therapy. The PESI algorithm comprises 11 routinely available clinical variables. It puts the subjects into one of five classes (I-V), with 30-day mortality ranging from 1.1% to 24.5%. Those in classes I and II are low-risk and those in classes III-V are high-risk.
The most commonly used method to predict clinical probability, the Wells score, is a clinical prediction rule, whose use is complicated by multiple versions being available. In 1995, Philip Steven Wells, initially developed a prediction rule (based on a literature search) to predict the likelihood of PE, based on clinical criteria. The prediction rule was revised in 1998 This prediction rule was further revised when simplified during a validation by Wells "et al." in 2000. In the 2000 publication, Wells proposed two different scoring systems using cutoffs of 2 or 4 with the same prediction rule. In 2001, Wells published results using the more conservative cutoff of 2 to create three categories. An additional version, the "modified extended version", using the more recent cutoff of 2 but including findings from Wells's initial studies were proposed. Most recently, a further study reverted to Wells's earlier use of a cutoff of 4 points to create only two categories.
There are additional prediction rules for PE, such as the Geneva rule. More importantly, the use of "any" rule is associated with reduction in recurrent thromboembolism.
"The Wells score":
- clinically suspected DVT — 3.0 points
- alternative diagnosis is less likely than PE — 3.0 points
- tachycardia (heart rate > 100) — 1.5 points
- immobilization (≥ 3d)/surgery in previous four weeks — 1.5 points
- history of DVT or PE — 1.5 points
- hemoptysis — 1.0 points
- malignancy (with treatment within six months) or palliative — 1.0 points
Traditional interpretation
- Score >6.0 — High (probability 59% based on pooled data)
- Score 2.0 to 6.0 — Moderate (probability 29% based on pooled data)
- Score <2.0 — Low (probability 15% based on pooled data)
Alternative interpretation
- Score > 4 — PE likely. Consider diagnostic imaging.
- Score 4 or less — PE unlikely. Consider D-dimer to rule out PE.
Recommendations for a diagnostic algorithm were published by the PIOPED investigators; however, these recommendations do not reflect research using 64 slice MDCT. These investigators recommended:
- Low clinical probability. If negative D-dimer, PE is excluded. If positive D-dimer, obtain MDCT and based treatment on results.
- Moderate clinical probability. If negative D-dimer, PE is excluded. "However", the authors were not concerned that a negative MDCT with negative D-dimer in this setting has a 5% probability of being false. Presumably, the 5% error rate will fall as 64 slice MDCT is more commonly used. If positive D-dimer, obtain MDCT and based treatment on results.
- High clinical probability. Proceed to MDCT. If positive, treat, if negative, more tests are needed to exclude PE. A D-dimer of less than 750 ug/L does not rule out PE in those who are at high risk.
In addition to evaluating the symptoms above, the health care provider may find decreased or no blood pressure in the arm or leg.
Tests to determine any underlying cause for thrombosis or embolism and to confirm presence of the obstruction may include:
- Doppler ultrasound, especially duplex ultrasonography. It may also involve transcranial doppler exam of arteries to the brain
- Echocardiography, sometimes involving more specialized techniques such as Transesophageal echocardiography (TEE) or myocardial contrast echocardiography (MCE) to diagnose myocardial infarction
- Arteriography of the affected extremity or organ Digital subtraction angiography is useful in individuals where administration of radiopaque contrast material must be kept to a minimum.
- Magnetic resonance imaging (MRI)
- Blood tests for measuring elevated enzymes in the blood, including cardiac-specific troponin T and/or troponin I, myoglobins, and creatine kinase isoenzymes. These indicate embolisation to the heart that has caused myocardial infarction. Myoglobins and creatine kinase are also elevated in the blood in embolisation in other locations.
- Blood cultures may be done to identify the organism responsible for any causative infection
- Electrocardiography (ECG) for detecting myocardial infarction
- Angioscopy using a flexible fiberoptic catheter inserted directly into an artery.
Amniocentesis and chorionic villus sampling are procedures conducted to assess the fetus. A sample of amniotic fluid is obtained by the insertion of a needle through the abdomen and into the uterus. Chorionic villus sampling is a similar procedure with a sample of tissue removed rather than fluid. These procedures are not associated with pregnancy loss during the second trimester but they are associated with miscarriages and birth defects in the first trimester. Miscarriage caused by invasive prenatal diagnosis (chorionic villus sampling (CVS) and amniocentesis) is rare (about 1%).
Prevention of atherosclerosis, which is a major risk factor of arterial embolism, can be performed e.g. by dieting, physical exercise and smoking cessation.
In case of high risk for developing thromboembolism, antithrombotic medication such as warfarin or coumadin may be taken prophylactically. Antiplatelet drugs may also be needed.
A review article in The New England Journal of Medicine based on a consensus meeting of the Society of Radiologists in Ultrasound in America (SRU) has suggested that miscarriage should be diagnosed only if any of the following criteria are met upon ultrasonography visualization:
The use of heparin following surgery is common if there are no issues with bleeding. Generally, a risk-benefit analysis is required, as all anticoagulants lead to an increased risk of bleeding. In people admitted to hospital, thrombosis is a major cause for complications and occasionally death. In the UK, for instance, the Parliamentary Health Select Committee heard in 2005 that the annual rate of death due to thrombosis was 25,000, with at least 50% of these being hospital-acquired. Hence "thromboprophylaxis" (prevention of thrombosis) is increasingly emphasized. In patients admitted for surgery, graded compression stockings are widely used, and in severe illness, prolonged immobility and in all orthopedic surgery, professional guidelines recommend low molecular weight heparin (LMWH) administration, mechanical calf compression or (if all else is contraindicated and the patient has recently suffered deep vein thrombosis) the insertion of a vena cava filter. In patients with medical rather than surgical illness, LMWH too is known to prevent thrombosis, and in the United Kingdom the Chief Medical Officer has issued guidance to the effect that preventative measures should be used in medical patients, in anticipation of formal guidelines.
Prevention consists of walking, drinking fluids and if currently hospitalized, changing of IV lines. Walking is especially suggested after a long period seated, particularly when one travels.
Inferior vena cava filters (IVCFs) are not recommended in those who are on anticoagulants. IVCFs may be used in clinical situations where a person has a high risk of experiencing a pulmonary embolism, but cannot be on anticoagulants due to a high risk of bleeding, or they have active bleeding. Retrievable IVCFs are recommended if IVCFs must be used, and a plan should be created to remove the filter when it is no longer needed.
Evidence supports the use of heparin in people following surgery who have a high risk of thrombosis to reduce the risk of DVTs; however, the effect on PEs or overall mortality is not known. In hospitalized non-surgical patients, mortality decreased but not statistically significant. It does not appear however to decrease the rate of symptomatic DVTs. Using both heparin and compression stockings appears better than either one alone in reducing the rate of DVT.
In hospitalized people who have had a stroke and not had surgery, mechanical measures (compression stockings) resulted in skin damage and no clinical improvement. Data on the effectiveness of compression stockings among hospitalized non-surgical patients without stroke is scarce.
The American College of Physicians (ACP) gave three strong recommendations with moderate quality evidence on VTE prevention in non-surgical patients: that hospitalized patients be assessed for their risk of thromboembolism and bleeding before prophylaxis (prevention); that heparin or a related drug is used if potential benefits are thought to outweigh potential harms; and that graduated compression stockings not be used. As an ACP policy implication, the guideline stated a lack of support for any performance measures that incentivize physicians to apply universal prophylaxis without regard to the risks. Goldhaber recommends that people should be assessed at their hospital discharge for persistent high-risk of venous thrombosis, and that people who adopt a heart-healthy lifestyle might lower their risk of venous thrombosis.
In those with cancer who are still walking about yet receiving chemotherapy, LMWH decreases the risk of VTE. Due to potential concerns of bleeding its routine use is not recommended. For people who are having surgery for cancer, it is recommended that they receive anticoagulation therapy (preferably LMWH) in order to prevent a VTE. LMWH is recommended for at least 7–10 days following cancer surgery, and for one month following surgery for people who have a high risk of VTEs.
In adults who have had their lower leg casted or placed in a brace for more than a week, LMWH decreased the risk of VTEs. LMWH is recommended for adults not in hospital with an above-knee cast and a below-knee cast, and is safe for this indication.
Following the completion of warfarin in those with prior VTE, long term aspirin is beneficial.
Up to 15 weeks' gestation, suction-aspiration or vacuum aspiration are the most common surgical methods of induced abortion. "Manual vacuum aspiration" (MVA) consists of removing the fetus or embryo, placenta, and membranes by suction using a manual syringe, while "electric vacuum aspiration" (EVA) uses an electric pump. These techniques differ in the mechanism used to apply suction, in how early in pregnancy they can be used, and in whether cervical dilation is necessary.
MVA, also known as "mini-suction" and "menstrual extraction", can be used in very early pregnancy, and does not require cervical dilation. Dilation and curettage (D&C), the second most common method of surgical abortion, is a standard gynecological procedure performed for a variety of reasons, including examination of the uterine lining for possible malignancy, investigation of abnormal bleeding, and abortion. Curettage refers to cleaning the walls of the uterus with a curette. The World Health Organization recommends this procedure, also called "sharp curettage," only when MVA is unavailable.
From the 15th week of gestation until approximately the 26th, other techniques must be used. Dilation and evacuation (D&E) consists of opening the cervix of the uterus and emptying it using surgical instruments and suction. After the 16th week of gestation, abortions can also be induced by intact dilation and extraction (IDX) (also called intrauterine cranial decompression), which requires surgical decompression of the fetus's head before evacuation. IDX is sometimes called "partial-birth abortion", which has been federally banned in the United States.
In the third trimester of pregnancy, induced abortion may be performed surgically by intact dilation and extraction or by hysterotomy. Hysterotomy abortion is a procedure similar to a caesarean section and is performed under general anesthesia. It requires a smaller incision than a caesarean section and is used during later stages of pregnancy.
First-trimester procedures can generally be performed using local anesthesia, while second-trimester methods may require deep sedation or general anesthesia.
The treatment for thrombosis depends on whether it is in a vein or an artery, the impact on the person, and the risk of complications from treatment.
Medical abortions are those induced by abortifacient pharmaceuticals. Medical abortion became an alternative method of abortion with the availability of prostaglandin analogs in the 1970s and the antiprogestogen mifepristone (also known as RU-486) in the 1980s.
The most common early first-trimester medical abortion regimens use mifepristone in combination with a prostaglandin analog (misoprostol or gemeprost) up to 9 weeks gestational age, methotrexate in combination with a prostaglandin analog up to 7 weeks gestation, or a prostaglandin analog alone. Mifepristone–misoprostol combination regimens work faster and are more effective at later gestational ages than methotrexate–misoprostol combination regimens, and combination regimens are more effective than misoprostol alone. This regime is effective in the second trimester. Medical abortion regiments involving mifepristone followed by misoprostol in the cheek between 24 and 48 hours later are effective when performed before 63 days' gestation.
In very early abortions, up to 7 weeks gestation, medical abortion using a mifepristone–misoprostol combination regimen is considered to be more effective than surgical abortion (vacuum aspiration), especially when clinical practice does not include detailed inspection of aspirated tissue. Early medical abortion regimens using mifepristone, followed 24–48 hours later by buccal or vaginal misoprostol are 98% effective up to 9 weeks gestational age. If medical abortion fails, surgical abortion must be used to complete the procedure.
Early medical abortions account for the majority of abortions before 9 weeks gestation in Britain, France, Switzerland, and the Nordic countries. In the United States, the percentage of early medical abortions is far lower.
Medical abortion regimens using mifepristone in combination with a prostaglandin analog are the most common methods used for second-trimester abortions in Canada, most of Europe, China and India, in contrast to the United States where 96% of second-trimester abortions are performed surgically by dilation and evacuation.
Depending on gestational age the differential diagnoses for abdominal pregnancy include miscarriage, intrauterine fetal death, placental abruption, an acute abdomen with an intrauterine pregnancy and a fibroid uterus with an intrauterine pregnancy .
The diagnosis for thrombophlebitis is primarily based on the appearance of the affected area. Frequent checks of the pulse, blood pressure, and temperature may be required. If the cause is not readily identifiable, tests may be performed to determine the cause, including the following:
- Doppler ultrasound
- Extremity arteriography
- Blood coagulation studies (Blood clotting tests)
As a general rule, any diver who has breathed gas under pressure at any depth who surfaces unconscious, loses consciousness soon after surfacing, or displays neurological symptoms within about 10 minutes of surfacing should be assumed to be suffering from arterial gas embolism.
Symptoms of arterial gas embolism may be present but masked by environmental effects such as hypothermia, or pain from other obvious causes. Neurological examination is recommended when there is suspicion of lung overexpansion injury. Symptoms of decompression sickness may be very similar to, and confused with, symptoms of arterial gas embolism, however, treatment is basically the same. Discrimination between gas embolism and decompression sickness may be difficult for injured divers, and both may occur simultaneously. Dive history may eliminate decompression sickness in many cases, and the presence of symptoms of other lung overexpansion injury would raise the probability of gas embolism.
Advanced abdominal pregnancy refers to situations where the pregnancy continues past 20 weeks of gestation (versus early abdominal pregnancy < 20 weeks). In those situations, live births have been reported in academic journals and also in the lay press where the babies are not uncommonly referred to as 'Miracle babies'. A patient may carry a dead fetus but will not go into labor. Over time, the fetus calcifies and becomes a lithopedion.
It is generally recommended to perform a laparotomy when the diagnosis of an abdominal pregnancy is made. However, if the baby is alive and medical support systems are in place, careful watching could be considered to bring the baby to viability. Women with an abdominal pregnancy will not go into labor. Delivery in a case of an advanced abdominal pregnancy will have to be via laparotomy. The survival of the baby is reduced and high perinatal mortality rates between 40–95% have been reported.
Babies of abdominal pregnancies are prone to birth defects due to compression in the absence of the uterine wall and the often reduced amount of amniotic fluid surrounding the unborn baby. The rate of malformations and deformations is estimated to be about 21%; typical deformations are facial and cranial asymmetries and joint abnormalities and the most common malformations are limb defects and central nervous malformations.
Once the baby has been delivered placental management becomes an issue. In normal deliveries the contraction of uterus provides a powerful mechanism to control blood loss, however, in an abdominal pregnancy the placenta is located over tissue that cannot contract and attempts of its removal may lead to life-threatening blood loss. Thus blood transfusion is frequent in the management of patients with this kind of pregnancy, with others even using tranexamic acid and recombinant factor VIIa, which both minimize blood loss.
Generally, unless the placenta can be easily tied off or removed, it may be preferable to leave it in place and allow for a natural regression. This process may take several months and can be monitored by clinical examination, checking human chorionic gonadotropin levels and by ultrasound scanning (in particular using doppler ultrasonography. Use of methotrexate to accelerate placental regression is controversial as the large amount of necrotic tissue is a potential site for infection, mifepristone has also be used to promote placental regression. Placental vessels have also been blocked by angiographic embolization. Complications of leaving the placenta can include residual bleeding, infection, bowel obstruction, pre-eclampsia (which may all necessitate further surgery) and failure to breast feed due to placental hormones.
Outcome with abdominal pregnancy can be good for the baby and mother, Lampe described an abdominal pregnancy baby and her mother who were well more than 22 years after surgery.
If a patent foramen ovale (PFO) is suspected, an examination by echocardiography may be performed to diagnose the defect. In this test, very fine bubbles are introduced into a patient's vein by agitating saline in a syringe to produce the bubbles, then injecting them into an arm vein. A few seconds later, these bubbles may be clearly seen in the ultrasound image, as they travel through the patient's right atrium and ventricle. At this time, bubbles may be observed directly crossing a septal defect, or else a patent foramen ovale may be opened temporarily by asking the patient to perform the Valsalva maneuver while the bubbles are crossing through the right heart – an action which will open the foramen flap and show bubbles passing into the left heart. Such bubbles are too small to cause harm in the test, but such a diagnosis may alert the patient to possible problems which may occur from larger bubbles, formed during activities like underwater diving, where bubbles may grow during decompression. A PFO test may be recommended for divers intending to expose themselves to relatively high decompression stress in deep technical diving.
The diagnosis of an individual suspected of having "fat embolism syndrome" can be done via the following tests and methods:
Early diagnosis still remains a challenge in CTEPH, with a median time of 14 months between symptom onset and diagnosis in expert centres. A suspicion of PH is often raised by echocardiography, but an invasive right heart catheterisation is required to confirm it. Once PH is diagnosed, the presence of thromboembolic disease requires imaging. The recommended diagnostic algorithm stresses the importance of initial investigation using an echocardiogram and V/Q scan and confirmation with right heart catheter and pulmonary angiography (PA).
Both V/Q scanning and modern multidetector CT angiography (CTPA) may be accurate methods for the detection of CTEPH, with excellent diagnostic efficacy in expert hands (sensitivity, specificity, and accuracy of 100%, 93.7%, and 96.5% for V/Q and 96.1%, 95.2%, and 95.6% for CTPA). However, CTPA alone cannot exclude the disease, but may help identify pulmonary artery distension resulting in left main coronary artery compression, pulmonary parenchymal lesions (e.g. as complications from previous pulmonary infarctions), and bleeding from bronchial collateral arteries. Today, the gold standard imaging remains invasive pulmonary angiography (PAG) using native angiograms or a digital subtraction technique.
Historically the prognosis for patients with untreated CTEPH was poor, with a 5-year survival of 40 mmHg at presentation. More contemporary data from the European CTEPH registry have demonstrated a 70% 3-year survival in patients with CTEPH who do not undergo the surgical procedure of pulmonary endarterectomy (PEA). Recent data from an international CTEPH registry demonstrate that mortality in CTEPH is associated with New York Heart Association (NYHA) functional class IV, increased right atrial pressure, and a history of cancer. Furthermore, comorbidities such as coronary disease, left heart failure, and chronic obstructive pulmonary disease (COPD) are risk factors for mortality.
In order to treat acute limb ischaemia there are a series of things that can be done to determine where the occlusion is located, the severity, and what the cause was. To find out where the occlusion is located one of the things that can be done is simply a pulse examination to see where the heart rate can be detected and where it stops being sensed. Also there is a lower body temperature below the occlusion as well as paleness. A Doppler evaluation is used to show the extent and severity of the ischaemia by showing flow in smaller arteries. Other diagnostical tools are duplex ultrasonography, computed tomography angiography (CTA), and magnetic resonance angiography (MRA). The CTA and MRA are used most often because the duplex ultrasonography although non-invasive is not precise in planning revascularization. CTA uses radiation and may not pick up on vessels for revascularization that are distal to the occlusion, but it is much quicker than MRA. In treating acute limb ischaemia time is everything.
In the worst cases acute limb ischaemia progresses to critical limb ischaemia, and results in death or limb loss. Early detection and steps towards fixing the problem with limb-sparing techniques can salvage the limb. Compartment syndrome can occur because of acute limb ischaemia because of the biotoxins that accumulate distal to the occlusion resulting in edema.
In addition to evaluating the symptoms described above, angiography can distinguish between cases caused by arteriosclerosis obliterans (displaying abnormalities in other vessels and collateral circulations) from those caused by emboli.
Magnetic resonance imaging (MRI) is the preferred test for diagnosing "skeletal muscle infarction".
The major cause of acute limb ischaemia is arterial thrombosis (85%), while embolic occlusion is responsible for 15% of cases. In rare instances, arterial aneurysm of the popliteal artery has been found to create a thrombosis or embolism resulting in ischaemia.
With treatment, maternal mortality is about 1 percent, although complications such as placental abruption, acute renal failure, subcapsular liver hematoma, permanent liver damage, and retinal detachment occur in about 25% of women. Perinatal mortality (stillbirths plus death in infancy) is between 73 and 119 per 1000 babies of woman with HELLP, while up to 40% are small for gestational age. In general, however, factors such as gestational age are more important than the severity of HELLP in determining the outcome in the baby.