Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
ARVD is an autosomal dominant trait with reduced penetrance. Approximately 40–50% of ARVD patients have a mutation identified in one of several genes encoding components of the desmosome, which can help confirm a diagnosis of ARVD. Since ARVD is an autosomal dominant trait, children of an ARVD patient have a 50% chance of inheriting the disease causing mutation. Whenever a mutation is identified by genetic testing, family-specific genetic testing can be used to differentiate between relatives who are at-risk for the disease and those who are not. ARVD genetic testing is clinically available.
There is a long asymptomatic lead-time in individuals with ARVD. While this is a genetically transmitted disease, individuals in their teens may not have any characteristics of ARVD on screening tests.
Many individuals have symptoms associated with ventricular tachycardia, such as palpitations, light-headedness, or syncope. Others may have symptoms and signs related to right ventricular failure, such as lower extremity edema, or liver congestion with elevated hepatic enzymes.
ARVD is a progressive disease. Over time, the right ventricle becomes more involved, leading to right ventricular failure. The right ventricle will fail before there is left ventricular dysfunction. However, by the time the individual has signs of overt right ventricular failure, there will be histological involvement of the left ventricle. Eventually, the left ventricle will also become involved, leading to bi-ventricular failure. Signs and symptoms of left ventricular failure may become evident, including congestive heart failure, atrial fibrillation, and an increased incidence of thromboembolic events.
Some people with bundle branch blocks are born with this condition. Many other acquire it as a consequence of heart disease. People with bundle branch blocks may still be quite active, and may have nothing more remarkable than an abnormal appearance to their ECG. However, when bundle blocks are complex and diffuse in the bundle systems, or associated with additional and significant ventricular muscle damage, they may be a sign of serious underlying heart disease. In more severe cases, a pacemaker may be required to restore an optimal electrical supply to the heart muscle.
Depending on the anatomical location of the defect which leads to a bundle branch block, the blocks are further classified into:
- Right bundle branch block
- Left bundle branch block
The left bundle branch block can be further sub classified into:
- Left anterior fascicular block. In this case only the anterior half of the left bundle branch (fascicle) is involved
- Left posterior fascicular block. Only the posterior part of the left bundle branch is involved
Other classifications of bundle branch blocks are;
- Bifascicular block. This is a combination of right bundle branch block (RBBB) and either left anterior fascicular block (LAFB) or left posterior fascicular block (LPFB)
- Trifascicular block. This is a combination of right bundle branch block with either left anterior fascicular block or left posterior fascicular block together with a first degree AV block
- Tachycardia-dependent bundle branch block
The treatment for diffuse distal conduction system disease is insertion of a pacemaker. If the PR prolongation is due to AV nodal disease, a case may be made for observation, as it may never progress to complete heart block with life threateningly low heart rates.
Regardless of where in the conduction system the block is, if the block is believed to be the cause of syncope in an individual, a pacemaker is an appropriate treatment.
In normal individuals, the AV node slows the conduction of electrical impulse through the heart. This is manifest on a surface electrocardiogram (ECG) as the PR interval. The normal PR interval is from 120 ms to 200 ms in length. This is measured from the initial deflection of the P wave to the beginning of the QRS complex.
In first-degree heart block, the diseased AV node conducts the electrical activity more slowly. This is seen as a PR interval greater than 200 ms in length on the surface ECG. It is usually an incidental finding on a routine ECG.
First-degree heart block does not require any particular investigations except for electrolyte and drug screens, especially if an overdose is suspected.
Investigations may also be warranted with a prolonged interval that is greater than 0.2 sec.
AVSDs can be detected by cardiac auscultation; they cause atypical murmurs and loud heart tones. Confirmation of findings from cardiac auscultation can be obtained with a cardiac ultrasound (echocardiography - less invasive) and cardiac catheterization (more invasive).
Tentative diagnosis can also be made in utero via fetal echocardiogram. An AVSD diagnosis made before birth is a marker for Down syndrome, although other signs and further testing are required before any definitive confirmation of either can be made.
Genetic testing for Brugada syndrome is clinically available and may help confirm a diagnosis, as well as differentiate between relatives who are at risk for the disease and those who are not. Some symptoms when pinpointing this disease include fainting, irregular heartbeats, and chaotic heartbeats. However, just detecting the irregular heartbeat may be a sign of another disease, so the doctor must detect another symptom as well.
The management includes identifying and correcting electrolyte imbalances and withholding any offending medications. This condition does not require admission unless there is an associated myocardial infarction. Even though it usually does not progress to higher forms of heart block, it may require outpatient follow-up and monitoring of the ECG, especially if there is a comorbid bundle branch block. If there is a need for treatment of an unrelated condition, care should be taken not to introduce any medication that may slow AV conduction. If this is not feasible, clinicians should be very cautious when introducing any drug that may slow conduction; and regular monitoring of the ECG is indicated.
The diagnosis of whether the PR prolongation is due to AV nodal disease or diffuse conduction system disease is typically made by an electrophysiology study of the conduction system. In an electrophysiology study, trifascicular block due to AV nodal disease (true trifascicular block does not involve the AV node) block is represented by a prolonged AH interval (denoting prolonged time from impulse generation in the atria and conduction to the bundle of His) with a relatively preserved HV interval (denoting normal conduction from the bundle of His to the ventricles). Trifascicular block due to distal conduction system disease is represented by a normal AH interval and a prolonged HV interval.
If an affected individual begins to experience severe TDBBB, then medical intervention is often advised. Suggested therapy for the treatment of TDBBB can include the prescription of certain medications or the implantation of a pacemaker device. Advised medications would possess anti-coagulant mechanisms to reduce the risk of blood clot formation ensuring that no further restriction of arteries would deprive the heart of oxygen and further damage the bundle branches. The use of a pacemaker would ensure that the heart receives a constant rhythmic electrical input that never changes in frequency. While this would effectively eliminate the occurrence of TDBBB, the pacemaker would restrict the patient's heart to a permanent rhythm, eliminating the ability of patients to perform physical activity. Future pacemakers that adaptively respond to physiological requirements are being developed in order to negate the limitations observed with their current use.
At the time of pacemaker implantation, AV synchrony should be optimized to prevent the occurrence of pacemaker syndrome. Where patients with optimized AV synchrony have shown great results of implantation and very low incidence of pacemaker syndrome than those with suboptimal AV synchronization.
In some cases, the disease can be detected by observing characteristic patterns on an electrocardiogram. These patterns may be present all the time, they might be elicited by the administration of particular drugs (e.g., Class IA, such as ajmaline or procainamide, or class 1C, such as flecainide or pilsicainide, antiarrhythmic drugs that block sodium channels and cause appearance of ECG abnormalities), or they might resurface spontaneously due to as-yet unclarified triggers.
Brugada syndrome has three different ECG patterns:
- Type 1 has a coved type ST elevation with at least 2 mm (0.2 mV) J-point elevation and a gradually descending ST segment followed by a negative T-wave.
- Type 2 has a saddle-back pattern with a least 2 mm J-point elevation and at least 1 mm ST elevation with a positive or biphasic T-wave. Type 2 pattern can occasionally be seen in healthy subjects.
- Type 3 has either a coved (type 1 like) or a saddle-back (type 2 like) pattern, with less than 2 mm J-point elevation and less than 1 mm ST elevation. Type 3 pattern is not rare in healthy subjects.
The pattern seen on the ECG is persistent ST elevations in the electrocardiographic leads V-V with a right bundle branch block (RBBB) appearance, with or without the terminal S waves in the lateral leads that are associated with a typical RBBB. A prolongation of the PR interval (a conduction disturbance in the heart) is also frequently seen. The ECG can fluctuate over time, depending on the autonomic balance and the administration of antiarrhythmic drugs. Adrenergic stimulation decreases the ST segment elevation, while vagal stimulation worsens it. (There is a case report of a patient who died while shaving, presumed due to the vagal stimulation of the carotid sinus massage.)
The administration of class Ia, Ic, and III drugs increases the ST segment elevation, as does fever. Exercise decreases ST segment elevation in some people, but increases it in others (after exercise, when the body temperature has risen). The changes in heart rate induced by atrial pacing are accompanied by changes in the degree of ST segment elevation. When the heart rate decreases, the ST segment elevation increases, and when the heart rate increases, the ST segment elevation decreases. However, the contrary can also be observed.
There are no specific diagnostic criteria for TIC, and it can be difficult to diagnose for a number of reasons. First, in patients presenting with both tachycardia and cardiomyopathy, it can be difficult to distinguish which is the causative agent. Additionally, it can occur in patients with or without underlying structural heart disease. Previously normal left ventricular ejection fraction or left ventricular systolic dysfunction out of proportion to a patient’s underlying cardiac disease can be important clues to possible TIC. The diagnosis of TIC is made after excluding other causes of cardiomyopathy and observing resolution of the left ventricular systolic dysfunction with treatment of the tachycardia.
Specific tests that can be used in the diagnosis and monitoring of TIC include:
- electrocardiography (EKG)
- Continuous cardiac rhythm monitoring (e.g. Holter monitor)
- echocardiography
- Radionuclide imaging
- Endomyocardial biopsy
- Cardiac magnetic resonance imaging (CMR)
- N-terminal pro-B-type natriuretic peptide (NT-pro BNP)
Cardiac rhythm monitors can be used to diagnose tachyarrhythmias. The most common modality used is an EKG. A continuous rhythm monitor such as a Holter monitor can be used to characterize the frequency of a tachyarrhythmia over a longer period of time. Additionally, some patients may not present to the clinical setting in an abnormal rhythm, and continuous rhythm monitor can be useful to determine if an arrhythmia is present over a longer duration of time.
To assess cardiac structure and function, echocardiography is the most commonly available and utilized modality. In addition to decreased left ventricular ejection fraction, studies indicate that patients with TIC may have a smaller left ventricular end-diastolic dimension compared to patients with idiopathic dilated cardiomyopathy. Radionuclide imaging can be used as a non-invasive test to detect myocardial ischemia. Cardiac MRI has also been used to evaluate patients with possible TIC. Late-gadolinium enhancement on cardiac MRI indicates the presence of fibrosis and scarring, and may be evidence of cardiomyopathy not due to tachycardia. A decline in serial NT-pro BNP with control of tachyarrhythmia indicates reversibility of the cardiomyopathy, which would also suggest TIC.
People with TIC display distinct changes in endomyocardial biopsies. TIC is associated with the infiltration of CD68 macrophages into the myocardium while CD3 T-cells are very rare. Furthermore, patients with TIC display significant fibrosis due to collagen deposition. The distribution of mitochondria has found to be altered as well, with an enrichment at the intercalated discs (EMID-sign).
TIC is likely underdiagnosed due to attribution of the tachyarrhythmia to the cardiomyopathy. Poor control of the tachyarrhythmia can result in worsening of heart failure symptoms and cardiomyopathy. Therefore, it is important to aggressively treat the tachyarrhythmia and monitor patients for resolution of left ventricular systolic dysfunction in cases of suspected TIC.
If the symptoms are present while the person is receiving medical care (e.g., in an emergency department), an electrocardiogram (ECG/EKG) may show typical changes that confirm the diagnosis. If the palpitations are recurrent, a doctor may request a Holter monitor (24-hour or longer portable ECG) recording. Again, this will show the diagnosis if the recorder is attached at the time of the symptoms. In rare cases, disabling but infrequent episodes of palpitations may require the insertion of a small microchip-based device (e.g., Reveal Plus) under the skin that continuously record heart activity, and can be read through the skin after an episode. All these ECG-based technologies also enable the distinction between AVNRT and other abnormal fast heart rhythms such as atrial fibrillation, atrial flutter, sinus tachycardia, ventricular tachycardia and tachyarrhythmias related to Wolff-Parkinson-White syndrome, all of which may have symptoms that are similar to AVNRT.
Blood tests commonly performed in people with palpitations are:
- thyroid function tests (TFTs) - an overactive thyroid increases the risk of AVNRT
- electrolytes - disturbances in potassium, calcium and magnesium may predispose to AVNRT
- cardiac markers - if there is a concern that myocardial infarction (heart attack) has occurred either as a cause or as a result of the AVNRT; this is usually only the case if the patient has experienced chest pain
The prognosis of patients with complete heart block is generally poor without therapy. Patients with 1st and 2nd degree heart block are usually asymptomatic.
Studies have shown that patients with Pacemaker syndrome and/or with sick sinus syndrome are at higher risk of developing fatal complications that calls for the patients to be carefully monitored in the ICU. Complications include atrial fibrillation, thrombo-embolic events, and heart failure.
TDBBB can be diagnosed with use of an electrocardiogram (ECG) which will "trace" the electrical activity of the heart, providing an overall view of the hearts electrical system. Typically, TDBBB will be evident on an ECG and manifest as a prolongation of the QRS complex (a QRS complex completion time that exceeds 120ms), notching or slurring of the R wave, or the absence of Q waves should the TDBBB affect the left ventricle.
Sinoatrial blocks are typically well-tolerated. They are not as serious as an AV block and most often do not require treatment. In some people, they can cause fainting, altered mental status, chest pain, hypoperfusion, and signs of shock. They can also lead to cessation of the SA node and more serious dysrhythmias. Emergency treatment, if deemed necessary, consists of administration of atropine sulfate or transcutaneous pacing.
The main pumping chamber, the ventricle, is protected (to a certain extent) against excessively high rates arising from the supraventricular areas by a "gating mechanism" at the atrioventricular node, which allows only a proportion of the fast impulses to pass through to the ventricles. In Wolff-Parkinson-White syndrome, a "bypass tract" avoids this node and its protection and the fast rate may be directly transmitted to the ventricles. This situation has characteristic findings on ECG.
A VSD can be detected by cardiac auscultation. Classically, a VSD causes a pathognomonic holo- or pansystolic murmur. Auscultation is generally considered sufficient for detecting a significant VSD. The murmur depends on the abnormal flow of blood from the left ventricle, through the VSD, to the right ventricle. If there is not much difference in pressure between the left and right ventricles, then the flow of blood through the VSD will not be very great and the VSD may be silent. This situation occurs a) in the fetus (when the right and left ventricular pressures are essentially equal), b) for a short time after birth (before the right ventricular pressure has decreased), and c) as a late complication of unrepaired VSD. Confirmation of cardiac auscultation can be obtained by non-invasive cardiac ultrasound (echocardiography). To more accurately measure ventricular pressures, cardiac catheterization, can be performed.
Treatment in emergency situations ultimately involves electrical pacing. Pharmacological management of suspected beta-blocker overdose might be treated with glucagon, calcium channel blocker overdose treated with calcium chloride and digitalis toxicity treated with the digoxin immune Fab.
Third-degree AV block can be treated by use of a dual-chamber artificial pacemaker. This type of device typically listens for a pulse from the SA node via lead in the right atrium and sends a pulse via a lead to the right ventricle at an appropriate delay, driving both the right and left ventricles. Pacemakers in this role are usually programmed to enforce a minimum heart rate and to record instances of atrial flutter and atrial fibrillation, two common secondary conditions that can accompany third-degree AV block. Since pacemaker correction of third-degree block requires full-time pacing of the ventricles, a potential side effect is pacemaker syndrome, and may necessitate use of a biventricular pacemaker, which has an additional 3rd lead placed in a vein in the left ventricle, providing a more coordinated pacing of both ventricles.
The 2005 Joint European Resuscitation and Resuscitation Council (UK) guidelines state that atropine is the first line treatment especially if there were any adverse signs, namely: 1) heart rate 3 seconds. Mobitz Type 2 AV block is another indication for pacing.
As with other forms of heart block, secondary prevention may also include medicines to control blood pressure and atrial fibrillation, as well as lifestyle and dietary changes to reduce risk factors associated with heart attack and stroke.
An episode of supraventricular tachycardia (SVT) due to AVNRT can be terminated by any action that transiently blocks the AV node. Various methods are possible.
Ebstein's cardiophysiology typically presents as an (antidromic) AV reentrant tachycardia with associated pre-excitation. In this setting, the preferred medication treatment agent is procainamide. Since AV-blockade may promote conduction over the accessory pathway, drugs such as beta blockers, calcium channel blockers, and digoxin are contraindicated.
If atrial fibrillation with pre-excitation occurs, treatment options include procainamide, flecainide, propafenone, dofetilide, and ibutilide, since these medications slow conduction in the accessory pathway causing the tachycardia and should be administered before considering electrical cardioversion. Intravenous amiodarone may also convert atrial fibrillation and/or slow the ventricular response.
The Canadian Cardiovascular Society (CCS) recommends surgical intervention for these indications:
- Limited exercise capacity (NYHA III-IV)
- Increasing heart size (cardiothoracic ratio greater than 65%)
- Important cyanosis (resting oxygen saturation less than 90% - level B)
- Severe tricuspid regurgitation with symptoms
- Transient ischemic attack or stroke
The CCS further recommends patients who require operation for Ebstein's anomaly should be operated on by congenital heart surgeons who have substantial specific experience and success with this operation. Every effort should be made to preserve the native tricuspid valve.