Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The diagnosis of AOS is a clinical diagnosis based on the specific features described above. A system of major and minor criteria was proposed.
The combination of two major criteria would be sufficient for the diagnosis of AOS, while a combination of one major and one minor feature would be suggestive of AOS. Genetic testing can be performed to test for the presence of mutation in one of the known genes, but these so far only account for an estimated 50% of patients with AOS. A definitive diagnosis may therefore not be achieved in all cases.
The overall prognosis is excellent in most cases. Most children with Adams–Oliver syndrome can likely expect to have a normal life span. However, individuals with more severe scalp and cranial defects may experience complications such as hemorrhage and meningitis, leading to long-term disability.
Diagnosis is based on clinical findings.
'Clinical findings'
- Profound congenital sensorineural deafness is present
- CT scan or MRI of the inner ear shows no recognizable structure in the inner ear.
- As michel's aplasia is associated with LAMM syndrome there will be Microtia and microdontia present(small sized teeth).
Molecular genetic Testing
1. "FGF3" is the only gene, whose mutation can cause congenital deafness with Michel's aplasia, microdontia and microtia
Carrier testing for at-risk relatives requires identification of mutations which are responsible for occurrence of disease in the family.
People with ED often have certain cranial-facial features which can be distinctive: frontal bossing is common, longer or more pronounced chins are frequent, broader noses are also very common. In some types of ED, abnormal development of parts of the eye can result in dryness of the eye, cataracts, and vision defects. Professional eye care can help minimize the effects of ED on vision. Similarly, abnormalities in the development of the ear may cause hearing problems. Respiratory infections can be more common because the normal protective secretions of the mouth and nose are not present. Precautions must be taken to limit infections.
Carrier testing for Roberts syndrome requires prior identification of the disease-causing mutation in the family. Carriers for the disorder are heterozygotes due to the autosomal recessive nature of the disease. Carriers are also not at risk for contracting Roberts syndrome themselves. A prenatal diagnosis of Roberts syndrome requires an ultrasound examination paired with cytogenetic testing or prior identification of the disease-causing ESCO2 mutations in the family.
Usually, a common form of treatment for the condition is a type of hand cream which moisturises the hard skin. However, currently the condition is incurable.
Many features of gerodermia osteodysplastica (GO) and another autosomal recessive form of cutis laxa, wrinkly skin syndrome (WSS, ""), are similar to such an extent that both disorders were believed to be variable phenotypes of a single disorder.
Several delineating factors, however, suggest that gerodermia osteodysplastica and wrinkly skin syndrome are distinct entities, but share the same clinic spectrum.
While the prevailing feature of wrinkly, loose skin is more localized with GO, it is usually systemic, yet eases in severity with age during the course of WSS. Also, as the fontanelles ("soft spots") are usually normal on the heads of infants with GO, they are often enlarged in WSS infants.
While WSS is associated with mutations of genes on chromosomes 2, 5, 7, 11 and 14; GO has been linked to mutations in the protein GORAB. A serum sialotransferrin type 2 pattern, also observed with WSS, is not present in GO patients.
But perhaps the most notable feature, differentiating GO from WSS and similar cutis laxa disorders, is the age-specific metaphyseal peg sometimes found in GO-affected long bone, near the knee. Not appearing until around age 4–5, then disappearing by physeal closure, this oddity of bone is thought to represent a specific genetic marker unique to GO and its effects on bone development.
Diagnosis of Bruck syndrome must distinguish the association of contractures and skeletal fragility. Ultrasound is used for prenatal diagnosis. The diagnosis of a neonate bears resemblance to arthrogryposis multiplex congenital, and later in childhood to osteogenesis imperfecta.
Pachyonychia congenita may be divided into these types:
- Pachyonychia congenita type I (also known as "Jadassohn–Lewandowsky syndrome") is an autosomal dominant keratoderma that principally involves the plantar surfaces, but also with nails changes that may be evident at birth, but more commonly develop within the first few months of life.
- Pachyonychia congenita type II (also known as "Jackson–Lawler pachyonychia congenita" and "Jackson–Sertoli syndrome") is an autosomal dominant keratoderma presenting with a limited focal plantar keratoderma that may be very minor, with nails changes that may be evident at birth, but more commonly develop within the first few months of life.
There are at least four types of FFDD:
- Type I: autosomal dominant FFDD
- Type II: autosomal recessive FFDD
- Type III: FFDD with other facial features
- Type IV: facial lesions resembling aplasia cutis in a preauricular distribution along the line of fusion of the maxillary and mandibular prominences. Autosomal recessive.
There are several ways to determine if a child has chondrodystrophy, including parent testing and x-rays. If the fetus is suspected of having chondrodystrophy, the parents can be tested to find out if the fetus in fact does have the disease. It is not until the baby is born that a diagnosis can be declared. The diagnosis is declared with the help of several x-rays and charted bone growth patterns. Once the child is diagnosed the parents have to monitor the children because of several different factors. As the child gets older, hearing, eyesight and motor skills may be defective. Also, breathing (apnea) and weight problems (obesity) may occur. Structurally, scoliosis, bowed legs (genu varum), and arthritis may result.
Craniometaphyseal dysplasia is diagnosed based on clinical and radiographic findings that include hyperostosis. Some things such as cranial base sclerosis and nasal sinuses obstruction can be seen during the beginning of the child's life. In radiographic findings the most common thing that will be found is the narrowing of foramen magnum and the widening of long bones. Once spotted treatment is soon suggested to prevent further compression of the foramen magnum and disabling conditions.
Usually observed at birth or shortly thereafter in 94% of patients, in other reports, patients did not develop skin lesions until 3 months or even 2 years after birth. Females are typically affected more often than males (64%).
Tetra-amelia syndrome has been reported in only a few families worldwide.
According to a 2011 study by Bermejo-Sanchez, amelia – that is, the lacking of one or more limbs – occurs in roughly 1 out of every 71,000 pregnancies.
Some patients have a few or no histopathologic abnormalities. Histological examination of a biopsy may show an increase in the number and size of capillaries and veins (rarely lymphatics), dilated capillaries located in the deeper dermis, and hyperplasia and swollen endothelial cells with occasional dilated veins and venous lakes.
Fibrochondrogenesis is quite rare. A 1996 study from Spain determined a national minimal prevalence for the disorder at 8 cases out of 1,158,067 live births.
A United Arab Emirates (UAE) University report, from early 2003, evaluated the results of a 5-year study on the occurrence of a broad range of osteochondrodysplasias. Out of 38,048 newborns in Al Ain, over the course of the study period, fibrochondrogenesis was found to be the most common of the recessive forms of osteochondrodysplasia, with a prevalence ratio of 1.05:10,000 births.
While these results represented the most common occurrence within the group studied, they do not dispute the rarity of fibrochondrogenesis. The study also included the high rate of consanguinous marriages as a prevailing factor for these disorders, as well as the extremely low rate of diagnosis-related pregnancy terminations throughout the region.
The only treatment for this disorder is surgery to reduce the compression of cranial nerves and spinal cord. However, bone regrowth is common since the surgical procedure can be technically difficult. Genetic counseling is offered to the families of the people with this disorder.
Cytogenetic preparations that have been stained by either Giemsa or C-banding techniques will show two characteristic chromosomal abnormalities. The first chromosomal abnormality is called premature centromere separation (PCS) and is the most likely pathogenic mechanism for Roberts syndrome. Chromosomes that have PCS will have their centromeres separate during metaphase rather than anaphase (one phase earlier than normal chromosomes). The second chromosomal abnormality is called heterochromatin repulsion (HR). Chromosomes that have HR experience separation of the heterochromatic regions during metaphase. Chromosomes with these two abnormalities will display a "railroad track" appearance because of the absence of primary constriction and repulsion at the heterochromatic regions. The heterochromatic regions are the areas near the centromeres and nucleolar organizers. Carrier status cannot be determined by cytogenetic testing. Other common findings of cytogenetic testing on Roberts syndrome patients are listed below.
- Aneuploidy- the occurrence of one or more extra or missing chromosomes
- Micronucleation- nucleus is smaller than normal
- Multilobulated Nuclei- the nucleus has more than one lobe
Beare–Stevenson cutis gyrata syndrome is so rare that a reliable incidence cannot be established as of yet; fewer than 20 patients with the condition have been reported.
Aplasia cutis congenita (ACC) is a rare disorder characterized by congenital absence of skin. Frieden classified ACC in 1986 into 9 groups on the basis of location of the lesions and associated congenital anomalies. The scalp is the most commonly involved area with lesser involvement of trunk and extremities. Frieden classified ACC with fetus papyraceus as type 5. This type presents as truncal ACC with symmetrical absence of skin in stellate or butterfly pattern with or without involvement of proximal limbs.]It is the most common congenital cicatricial alopecia, and is a congenital focal absence of epidermis with or without evidence of other layers of the skin.
The exact etiology of ACC is still unclear but intrauterine infection by varicella or herpes virus, drugs such as methimazole, misoprostol, valproate, cocaine, marijuana etc., fetus papyraceus, feto-fetal transfusion, vascular coagulation defects, amniotic membrane adherence, abnormal elastic fiber biomechanical forces and trauma are implicated. It can be associated with Johanson-Blizzard syndrome, Adams-Oliver syndrome, trisomy 13, and Wolf-Hirschhorn syndrome.
It can also seen with exposure to methimazole and carbimazole in utero. This dermatological manifestation has been linked to Peptidase D haploinsufficiency and a deletion in Chromosome 19.
This condition has been linked to mutations in the ribosomal GTPase BMS1 gene.
Urbach–Wiethe disease is typically diagnosed by its clinical dermatological manifestations, particularly the beaded papules on the eyelids. Doctors can also test the hyaline material with a periodic acid-Schiff (PAS) staining, as the material colors strongly for this stain.
Immunohistochemical skin labeling for antibodies for the ECM1 protein as labeling has been shown to be reduced in the skin of those affected by Urbach–Wiethe disease. Staining with anti-type IV collagen antibodies or anti-type VII collagen antibodies reveals bright, thick bands at the dermoepidermal junction.
Non-contrast CT scans can image calcifications, but this is not typically used as a means of diagnosing the disease. This is partly due to the fact that not all Urbach-Wiethe patients exhibit calcifications, but also because similar lesions can be formed from other diseases such as herpes simplex and encephalitis. The discovery of mutations within the ECM1 gene has allowed the use of genetic testing to confirm initial clinical diagnoses of Urbach–Wiethe disease. It also allows doctors to better distinguish between Urbach–Wiethe disease and other similar diseases not caused by mutations in ECM1.
Membranous aplasia cutis is a cutaneous condition, a type of aplasia cutis congenita, which can be seen along the embryonic fusion lines of the face.
The fibrocartilaginous effects of fibrochondrogenesis on chondrocytes has shown potential as a means to produce therapeutic cellular biomaterials via tissue engineering and manipulation of stem cells, specifically human embryonic stem cells.
Utilization of these cells as curative cartilage replacement materials on the cellular level has shown promise, with beneficial applications including the repair and healing of damaged knee menisci and synovial joints; temporomandibular joints, and vertebra.
DC is associated with shorter life expectancy, but many live to at least age 60.