Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Athlete's heart is not dangerous for athletes (though if a nonathlete has symptoms of bradycardia, cardiomegaly, and cardiac hypertrophy, another illness may be present). Athlete's heart is not the cause of sudden cardiac death during or shortly after a workout, which mainly occurs due to hypertrophic cardiomyopathy, a genetic disorder.
No treatment is required for people with athletic heart syndrome; it does not pose any physical threats to the athlete, and despite some theoretical concerns that the ventricular remodeling might conceivably predispose for serious arrhythmias, no evidence has been found of any increased risk of long-term events. Athletes should see a physician and receive a clearance to be sure their symptoms are due to athlete’s heart and not another heart disease, such as cardiomyopathy. If the athlete is uncomfortable with having athlete's heart or if a differential diagnosis is difficult, deconditioning from exercise for a period of three months allows the heart to return to its regular size. However, one long-term study of elite-trained athletes found that dilation of the left ventricle was only partially reversible after a long period of deconditioning. This deconditioning is often met with resistance to the accompanying lifestyle changes. The real risk attached to athlete's heart is if athletes or nonathletes simply assume they have the condition, instead of making sure they do not have a life-threatening heart illness.
Because several well-known and high-profile cases of athletes experiencing sudden unexpected death due to cardiac arrest, such as Reggie White and Marc-Vivien Foé, a growing movement is making an effort to have both professional and school-based athletes screened for cardiac and other related conditions, usually through a careful medical and health history, a good family history, a comprehensive physical examination including auscultation of heart and lung sounds and recording of vital signs such as heart rate and blood pressure, and increasingly, for better efforts at detection, such as an electrocardiogram.
An electrocardiogram (ECG) is a relatively straightforward procedure to administer and interpret, compared to more invasive or sophisticated tests; it can reveal or hint at many circulatory disorders and arrhythmias. Part of the cost of an ECG may be covered by some insurance companies, though routine use of ECGs or other similar procedures such as echocardiography (ECHO) are still not considered routine in these contexts. Widespread routine ECGs for all potential athletes during initial screening and then during the yearly physical assessment could well be too expensive to implement on a wide scale, especially in the face of the potentially very large demand. In some places, a shortage of funds, portable ECG machines, or qualified personnel to administer and interpret them (medical technicians, paramedics, nurses trained in cardiac monitoring, advanced practice nurses or nurse practitioners, physician assistants, and physicians in internal or family medicine or in some area of cardiopulmonary medicine) exist.
If sudden cardiac death occurs, it is usually because of pathological hypertrophic enlargement of the heart that went undetected or was incorrectly attributed to the benign "athletic" cases. Among the many alternative causes are episodes of isolated arrhythmias which degenerated into lethal VF and asystole, and various unnoticed, possibly asymptomatic cardiac congenital defects of the vessels, chambers, or valves of the heart. Other causes include carditis, endocarditis, myocarditis, and pericarditis whose symptoms were slight or ignored, or were asymptomatic.
The normal treatments for episodes due to the pathological look-alikes are the same mainstays for any other episode of cardiac arrest: Cardiopulmonary resuscitation, defibrillation to restore normal sinus rhythm, and if initial defibrillation fails, administration of intravenous epinephrine or amiodarone. The goal is avoidance of infarction, heart failure, and/or lethal arrhythmias (ventricular tachycardia, ventricular fibrillation, asystole, or pulseless electrical activity), so ultimately to restore normal sinus rhythm.
Socioeconomic correlates of health have been well established in the study of heart disease, lung cancer, and diabetes. Many of the explanations for the increased incidence of these conditions in people with lower socioeconomic status (SES) suggest they are the result of poor diet, low levels of exercise, dangerous jobs (exposure to toxins etc.) and increased levels of smoking and alcohol intake in socially deprived populations. Hesdorffer et al. found that low SES, indexed by poor education and lack of home ownership, was a risk factor for epilepsy in adults, but not in children in a population study. Low socioeconomic status may have a cumulative effect for the risk of developing epilepsy over a lifetime.
Presumptive diagnosis is made by characteristic clinical signs, post mortem lesions, and presence of competent vectors. Laboratory confirmation is by viral isolation, with such techniques as quantitative PCR for detecting viral RNA, antigen capture (ELISA), and immunofluorescence of infected tissues. Serological tests are only useful for detecting recovered animals, as sick animals die before they are able to mount effective immune responses.
There were also observations that hippocampal sclerosis was associated with vascular risk factors. Hippocampal sclerosis cases were more likely than Alzheimer's disease to have had a history of stroke (56% vs. 25%) or hypertension (56% vs. 40%), evidence of small vessel disease (25% vs. 6%), but less likely to have had diabetes mellitus (0% vs. 22%).
There is currently no treatment for AHS.
Control of an outbreak in an endemic region involves quarantine, vector control and vaccination. To prevent this disease, the affected horses are usually slaughtered, and the uninfected horses are vaccinated against the virus. Three vaccines currently exist, which include a polyvalent vaccine, a monovalent vaccine, and a monovalent inactivated vaccine. This disease can also be prevented by destroying the insect vector habitats using insecticides.
There is no cure for the alien hand syndrome. However, the symptoms can be reduced and managed to some degree by keeping the alien hand occupied and involved in a task, for example by giving it an object to hold in its grasp. Specific learned tasks can restore voluntary control of the hand to a significant degree. One patient with the "frontal" form of alien hand who would reach out to grasp onto different objects (e.g., door handles) as he was walking was given a cane to hold in the alien hand while walking, even though he really did not need a cane for its usual purpose of assisting with balance and facilitating ambulation. With the cane firmly in the grasp of the alien hand, it would generally not release the grasp and drop the cane in order to reach out to grasp onto a different object. Other techniques proven to be effective includes; wedging the hand between the legs or slapping it; warm water application and visual or tactile contact. Additionally, Wu et al. found that an irritating alarm activated by biofeedback reduced the time the alien hand held an object.
In the presence of unilateral damage to a single cerebral hemisphere, there is generally a gradual reduction in the frequency of alien behaviors observed over time and a gradual restoration of voluntary control over the affected hand. Actually, when AHS originates from focal injury of acute onset, recovery usually occurs within a year. One theory is that neuroplasticity in the bihemispheric and subcortical brain systems involved in voluntary movement production can serve to re-establish the connection between the executive production process and the internal self-generation and registration process. Exactly how this may occur is not well understood, but a process of gradual recovery from alien hand syndrome when the damage is confined to a single cerebral hemisphere has been reported. In some instances, patients may resort to constraining the wayward, undesirable and sometimes embarrassing actions of the impaired hand by voluntarily grasping onto the forearm of the impaired hand using the intact hand. This observed behavior has been termed "self-restriction" or "self-grasping".
In another approach, the patient is trained to perform a specific task, such as moving the alien hand to contact a specific object or a highly salient environmental target, which is a movement that the patient can learn to generate voluntarily through focused training in order to effectively override the alien behavior. It is possible that some of this training produces a re-organization of premotor systems within the damaged hemisphere, or, alternatively, that ipsilateral control of the limb from the intact hemisphere may be expanded.
Another method involves simultaneously "muffling" the action of the alien hand and limiting the sensory feedback coming back to the hand from environmental contact by placing it in a restrictive "cloak" such as a specialized soft foam hand orthosis or, alternatively, an everyday oven mitt. Other patients have reported using an orthotic device to restrict perseverative grasping or restraining the alien hand by securing it to the bed pole. Of course, this can limit the degree to which the hand can participate in addressing functional goals for the patient and may be considered to be an unjustifiable restraint.
Theoretically, this approach could slow down the process through which voluntary control of the hand is restored if the neuroplasticity that underlies recovery involves the recurrent exercise of voluntary will to control the actions of the hand in a functional context and the associated experiential reinforcement through successful willful suppression of the alien behavior.
In both the frontal and the posterior variants of the alien hand syndrome, the patient's reactions to the limb's apparent capability to perform goal-directed actions independent of conscious volition is similar. In both of these variants of alien hand syndrome, the alien hand emerges in the hand contralateral to the damaged hemisphere.