Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
While cancer is generally considered a disease of old age, children can also develop cancer. In contrast to adults, carcinomas are exceptionally rare in children..
The two biggest risk factors for ovarian carcinoma are age and family history.
Staging of carcinoma refers to the process of combining physical/clinical examination, pathological review of cells and tissues, surgical techniques, laboratory tests, and imaging studies in a logical fashion to obtain information about the size of the neoplasm and the extent of its invasion and metastasis.
Carcinomas are usually staged with Roman numerals. In most classifications, Stage I and Stage II carcinomas are confirmed when the tumor has been found to be small and/or to have spread to local structures only. Stage III carcinomas typically have been found to have spread to regional lymph nodes, tissues, and/or organ structures, while Stage IV tumors have already metastasized through the blood to distant sites, tissues, or organs.
In some types of carcinomas, Stage 0 carcinoma has been used to describe carcinoma "in situ", and occult carcinomas detectable only via examination of sputum for malignant cells (in lung carcinomas).
In more recent staging systems, substages (a, b, c) are becoming more commonly used to better define groups of patients with similar prognosis or treatment options.
Carcinoma stage is the variable that has been most consistently and tightly linked to the prognosis of the malignancy.
The criteria for staging can differ dramatically based upon the organ system in which the tumor arises. For example, the colon and bladder cancer staging system relies on depth of invasion, staging of breast carcinoma is more dependent on the size of the tumor, and in renal carcinoma, staging is based on both the size of the tumor and the depth of the tumor invasion into the renal sinus. Carcinoma of the lung has a more complicated staging system, taking into account a number of size and anatomic variables.
The UICC/AJCC TNM systems are most often used. For some common tumors, however, classical staging methods (such as the Dukes classification for colon cancer) are still used.
The criteria for diagnosing BACs have changed since 1999. Under the new definition, BAC is defined as a tumor that grows in a lepidic (that is, a scaly covering) fashion along pre-existing airway structures, without detectable invasion or destruction of the underlying tissue, blood vessels, or lymphatics. Because invasion must be ruled out, BAC can be diagnosed only after complete sectioning and examination of the entire tumor, not using biopsy or cytology samples. BAC is considered a pre-invasive malignant lesion that, after further mutation and progression, eventually generates an invasive adenocarcinoma. Therefore, it is considered a form of carcinoma "in situ" (CIS).
The prognosis of EMECL is relatively good, and considerably better than most other forms of NSCLC. The skull and dura are possible sites for metastasis from pulmonary EMC. The MIB-1 index is a predictive marker of malignant potential.
EMECL is staged in the same manner as other non-small cell lung carcinomas, based on the TNM (Tumor-Node-Metastasis) staging system.
Because of its rarity, there have been no randomized clinical trials of treatment of GCCL, and all information available derives from small retrospective institutional series or multicenter metadata.
The criteria for diagnosing BAC have changed since 1999. Under the new definition, BAC is not considered to be an invasive tumor by pathologists, but as one form of carcinoma in situ (CIS). Like other forms of CIS, BAC may progress and become overtly invasive, exhibiting malignant, often lethal, behavior. Major surgery, either a lobectomy or a pneumonectomy, is usually needed to control it, and like other forms of non-small cell lung carcinoma, recurrences are frequent. Therefore, oncologists classify it among the other malignant tumors, which are invasive tumors.
Under the new, more restrictive WHO criteria for lung cancer classification, BAC is now diagnosed much less frequently than it was in the past. Recent studies suggest that BAC comprises between 3% and 5% of all lung carcinomas in the U.S.
MCACL has a much more favorable prognosis than most other forms of adenocarcinoma and most other NSCLC's. Cases have been documented of continued growth of these lesions over a period of 10 years without symptoms or metastasis. The overall mortality rate appears to be somewhere in the vicinity of 18% to 27%, depending on the criteria that are used to define this entity.
Giant-cell lung cancers have long been considered to be exceptionally aggressive malignancies that grow very rapidly and have a very poor prognosis.
Many small series have suggested that the prognosis of lung tumors with giant cells is worse than that of most other forms of non-small-cell lung cancer (NSCLC), including squamous cell carcinoma, and spindle cell carcinoma.
The overall five-year survival rate in GCCL varies between studies but is generally considered to be very low. The (US) Armed Forces Institute of Pathology has reported a figure of 10%, and in a study examining over 150,000 lung cancer cases, a figure of 11.8% was given. However, in the latter report the 11.8% figure was based on data that included spindle cell carcinoma, a variant which is generally considered to have a less dismal prognosis than GCCL. Therefore, the likely survival of "pure" GCCL is probably lower than the stated figure.
In the large 1995 database review by Travis and colleagues, giant-cell carcinoma has the third-worst prognosis among 18 histological forms of lung cancer. (Only small-cell carcinoma and large-cell carcinoma had shorter average survival.)
Most GCCL have already grown and invaded locally and/or regionally, and/or have already metastasized distantly, and are inoperable, at the time of diagnosis.
Staging is a formal procedure to determine how developed the cancer is. This determines treatment options.
The American Joint Committee on Cancer (AJCC) and the International Union Against Cancer (UICC) recommend TNM staging, using a uniform scheme for non-small cell lung carcinoma, small-cell lung carcinoma and broncho-pulmonary carcinoid tumors. With TNM staging, the cancer is classified based on the size of the tumor and spread to lymph nodes and other organs. As the tumor grows in size and the areas affected become larger, the staging of the cancer becomes more advanced as well.
There are several components of NSCLC staging which then influence physicians' treatment strategies. The lung tumor itself is typically assessed both radiographically for overall size as well as by a pathologist under the microscope to identify specific genetic markers or to see if there has been invasion into important structures within the chest (e.g., bronchus or pleural cavity). Next, the patient's nearby lymph nodes within the chest cavity known as the mediastinum will be checked for disease involvement. Finally, the patient will be evaluated for more distant sites of metastatic disease, most typically with brain imaging and or scans of the bones.
These aggressive tumors are generally diagnosed at advanced stages and survival is generally shorter. The prognosis of SRCC and its chemosensitivity with specific regimens are still controversial as SRCC is not specifically identified in most studies and its poor prognosis may be due to its more advanced stage. One study suggests that its dismal prognosis seems to be caused by its intrinsic tumor biology, suggesting an area for further research.
The survival rates for stages I through IV decrease significantly due to the advancement of the disease. For stage I, the five-year survival rate is 47%, stage II is 30%, stage III is 10%, and stage IV is 1%.
The prognosis of patients with FA as a whole is considered to be better than that of most other forms of non-small cell carcinoma, including biphasic pulmonary blastoma.
For treatment purposes, MCACL has been traditionally considered a non-small cell lung carcinoma (NSCLC). Complete radical surgical resection is the treatment of choice.
There is virtually no data regarding new molecular targets or targeted therapy in the literature to date. Iwasaki and co-workers failed to find mutations of the epidermal growth factor receptor (EGFR) or the cellular Kirsten rat sarcoma virus oncogene "K-ras" in one reported case.
Imaging studies such as X-rays, computed tomography scans, or MRI may be required to diagnose clear-cell sarcoma together with a physical exam. Normally a biopsy is also necessary. Furthermore, a chest CT, a bone scan and positron emission tomography (PET) may be part of the tests in order to evaluate areas where metastases occur.
For surface epithelial-stromal tumors, the most common sites of metastasis are the pleural cavity (33%), the liver (26%), and the lungs (3%).
Staging of c-SCLC patients is usually performed in an analogous fashion to patients with "pure" small cell lung carcinoma.
For several decades, SCLC has been staged according to a dichotomous distinction of "limited disease" (LD) "vs." "extensive disease" (ED) tumor burdens. Nearly all clinical trials have been conducted on SCLC patients staged dichotomously in this fashion. LD is roughly defined as a locoregional tumor burden confined to one hemithorax that can be encompassed within a single, tolerable radiation field, and without detectable distant metastases beyond the chest or supraclavicular lymph nodes. A patient is assigned an ED stage when the tumor burden is greater than that defined under LD criteria — either far advanced locoregional disease, malignant effusions from the pleura or pericardium, or distant metastases.
However, more recent data reviewing outcomes in very large numbers of SCLC patients suggests that the TNM staging system used for NSCLC is also reliable and valid when applied to SCLC patients, and that more current versions may allow better treatment decisionmaking and prognostication in SCLC than with the old dichotomous staging protocol.
Adenocarcinoma of the lung tends to stain mucin positive as it is derived from the mucus-producing glands of the lungs. Similar to other adenocarcinoma, if this tumor is well differentiated (low grade) it will resemble the normal glandular structure. Poorly differentiated adenocarcinoma will not resemble the normal glands (high grade) and will be detected by seeing that they stain positive for mucin (which the glands produce). Adenocarcinoma can also be distinguished by staining for TTF-1, a cell marker for adenocarcinoma.
To reveal the adenocarcinomatous lineage of the solid variant, demonstration of intracellular mucin production may be performed. Foci of squamous metaplasia and dysplasia may be present in the epithelium proximal to adenocarcinomas, but these are not the precursor lesions for this tumor. Rather, the precursor of peripheral adenocarcinomas has been termed "atypical adenomatous hyperplasia" (AAH). Microscopically, AAH is a well-demarcated focus of epithelial proliferation, containing cuboidal to low-columnar cells resembling club cells or type II pneumocytes. These demonstrate various degrees of cytologic atypia, including hyperchromasia, pleomorphism, prominent nucleoli. However, the atypia is not to the extent as seen in frank adenocarcinomas. Lesions of AAH are monoclonal, and they share many of the molecular aberrations (like KRAS mutations) that are associated with adenocarcinomas.
Primary signet-ring cell carcinoma of the urinary bladder is extremely rare and patient survival is very poor and occurs mainly in men ages 38 to 83. However, one such patient treated with a radical cystectomy followed by combined S-1 and Cisplatin adjuvant chemotherapy did demonstrate promising long-term survival of 90 months.
Cancer screening uses medical tests to detect disease in large groups of people who have no symptoms. For individuals with high risk of developing lung cancer, computed tomography (CT) screening can detect cancer and give a person options to respond to it in a way that prolongs life. This form of screening reduces the chance of death from lung cancer by an absolute amount of 0.3% (relative amount of 20%). High risk people are those age 55–74 who have smoked equivalent amount of a pack of cigarettes daily for 30 years including time within the past 15 years.
CT screening is associated with a high rate of falsely positive tests which may result in unneeded treatment. For each true positive scan there are about 19 falsely positives scans. Other concerns include radiation exposure and the cost of testing along with follow up. Research has not found two other available tests—sputum cytology or chest radiograph (CXR) screening tests—to have any benefit.
The United States Preventive Services Task Force (USPSTF) recommends yearly screening using low-dose computed tomography in those who have a total smoking history of 30 pack-years and are between 55 and 80 years old until a person has not been smoking for more than 15 years. Screening should not be done in those with other health problems that would make treatment of lung cancer if found not an option. The English National Health Service was in 2014 re-examining the evidence for screening.
It is important to exclude a tumor which is directly extending into the ear canal from the parotid salivary gland, especially when dealing with an adenoid cystic or mucoepidermoid carcinoma. This can be eliminated by clinical or imaging studies. Otherwise, the histologic differential diagnosis includes a ceruminous adenoma (a benign ceruminous gland tumor) or a neuroendocrine adenoma of the middle ear (middle ear adenoma).
Reliable comprehensive incidence statistics for c-SCLC are unavailable. In the literature, the frequency with which the c-SCLC variant is diagnosed largely depends on the size of tumor samples, tending to be higher in series where large surgical resection specimens are examined, and lower when diagnoses are based on small cytology and/or biopsy samples. Tatematsu "et al." reported 15 cases of c-SCLC (12%) in their series of 122 consecutive SCLC patients, but only 20 resection specimens were examined. In contrast, Nicholson "et al." found 28 c-SCLC (28%) in a series of 100 consecutive resected SCLC cases. It appears likely, then, that the c-SCLC variant comprises 25% to 30% of all SCLC cases.
As the incidence of SCLC has declined somewhat in the U.S. in recent decades, it is likely that c-SCLC has also decreased in incidence. Nevertheless, small cell carcinomas (including the c-SCLC variant) still comprise 15–20% of all lung cancers, with c-SCLC probably accounting for 4–6%. With 220,000 cases of newly diagnosed lung cancer in the U.S. each year, it can be estimated that between 8,800 and 13,200 of these are c-SCLC.
In a study of 408 consecutive patients with SCLC, Quoix and colleagues found that presentation as a solitary pulmonary nodule (SPN) is particularly indicative of a c-SCLC — about 2/3 of their SPN's were pathologically confirmed to be c-SCLC's containing a large cell carcinoma component.
In most series, LCLC's comprise between 5% and 10% of all lung cancers.
According to the Nurses' Health Study, the risk of large cell lung carcinoma increases with a previous history of tobacco smoking, with a previous smoking duration of 30 to 40 years giving a relative risk of approximately 2.3 compared to never-smokers, and a duration of more than 40 years giving a relative risk of approximately 3.6.
Another study concluded that cigarette smoking is the predominant cause of large cell lung cancer. It estimated that the odds ratio associated with smoking two or more packs/day for current smokers is 37.0 in men and 72.9 in women.
Early stage disease is treated surgically. Targeted therapy is available for lung adenocarcinomas with certain mutations. Crizotinib is effective in tumors with fusions involving ALK or ROS1, whereas gefitinib, erlotinib, and afatinib are used in patients whose tumors have mutations in EGFR.
LCLC-RP are considered to be especially aggressive tumors with a dismal prognosis. Many published cases have shown short survival times after diagnosis. Some studies suggest that, as the proportion of rhabdoid cells in the tumor increases, the prognosis tends to worsen, although this is most pronounced when the proportion of rhabdoid cells exceeds 5%. With regard to "parent" neoplasms other than LCLC, adenocarcinomas with rhabdoid features have been reported to have worse prognoses than adenocarcinomas without rhabdoid features, although an "adenocarcinoma with rhabdoid phenotype" tumor variant has not been specifically recognized as a distinct entity under the WHO-2004 classification system.
Interestingly, there are case reports of rhabdoid carcinomas recurring after unusually long periods, which is unusual for a fast-growing, aggressive tumor type. One report described a very early stage patient whose tumor recurred 6 years after initial treatment. Although rapidly progressive, fulminant courses seem to be the rule in this entity, long-term survival has also been noted, even post-metastectomy in late stage, distant metastatic disease.