Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Acrocallosal syndrome (also known as ACLS) is a rare autosomal recessive syndrome characterized by corpus callosum agenesis, polydactyly, multiple dysmorphic features, motor and mental retardation, and other symptoms. The syndrome was first described by Albert Schinzel in 1979.
It is associated with "GLI3".
Acrocallosal syndrome (ACLS, ACS, Schinzel-Type, Hallux-duplication) is a rare, heterogeneous [3] autosomal recessive disorder first discovered by Albert Schinzel (1979) in a 3-year-old boy . To inherit ACLS, one gene copy from each parent must contain a mutation somewhere in the KIF7 gene and be passed on to the child [3]. Characteristics of this syndrome include absence or poor development of the area connecting the left and right parts of the brain, an abnormally large head, increased distance between facial features (eyes), poor motor skills, mental retardation [2], extra fingers and toes, many facial deformities [3], and cleft palate [5]. This is considered a rare disorder and is placed on the NIH Office of Rare Diseases (fewer than 200,000 cases) rare disease list [8]. Lifespan may range from stillbirth to normal expectancy depending on pregnancy complications and severity of the disorder [2,3,5]. In mild cases, the subjects have been shown to live relatively normal lives, but with developmental delays [2].
The MRI is perhaps the most used technique for diagnosing the state of the Anterior Cruciate Ligament but it not always the most reliable. In some cases the Anterior Cruciate Ligament can indeed not be seen because of the blood surrounding it.
Laximetry is a reliable technique for diagnosing a torn anterior cruciate ligament.
The absence of a pulse confirms a clinical diagnosis of cardiac arrest, but PEA can only be distinguished from other causes of cardiac arrest with a device capable of electrocardiography (ECG/EKG). In PEA, there is organised or semi-organised electrical activity in the heart as opposed to asystole (flatline)or to the disorganised electrical activity of either ventricular fibrillation or ventricular tachycardia.
Cardiac arrest is synonymous with clinical death.
A cardiac arrest is usually diagnosed clinically by the absence of a pulse. In many cases lack of carotid pulse is the gold standard for diagnosing cardiac arrest, as lack of a pulse (particularly in the peripheral pulses) may result from other conditions (e.g. shock), or simply an error on the part of the rescuer. Nonetheless, studies have shown that rescuers often make a mistake when checking the carotid pulse in an emergency, whether they are healthcare professionals or lay persons.
Owing to the inaccuracy in this method of diagnosis, some bodies such as the European Resuscitation Council (ERC) have de-emphasised its importance. The Resuscitation Council (UK), in line with the ERC's recommendations and those of the American Heart Association,
have suggested that the technique should be used only by healthcare professionals with specific training and expertise, and even then that it should be viewed in conjunction with other indicators such as agonal respiration.
Various other methods for detecting circulation have been proposed. Guidelines following the 2000 International Liaison Committee on Resuscitation (ILCOR) recommendations were for rescuers to look for "signs of circulation", but not specifically the pulse. These signs included coughing, gasping, colour, twitching and movement. However, in face of evidence that these guidelines were ineffective, the current recommendation of ILCOR is that cardiac arrest should be diagnosed in all casualties who are unconscious and not breathing normally. Another method is to use molecular autopsy or postmortem molecular testing which uses a set of molecular techniques to find the ion channels that are cardiac defective.
Accurate determination of core temperature often requires a special low temperature thermometer, as most clinical thermometers do not measure accurately below . A low temperature thermometer can be placed in the rectum, esophagus or bladder. Esophageal measurements are the most accurate and are recommended once a person is intubated. Other methods of measurement such as in the mouth, under the arm, or using an infrared ear thermometer are often not accurate.
As a hypothermic person's heart rate may be very slow, prolonged feeling for a pulse could be required before detecting. In 2005, the American Heart Association recommended at least 30–45 seconds to verify the absence of a pulse before initiating CPR. Others recommend a 60-second check.
The classical ECG finding of hypothermia is the Osborn J wave. Also, ventricular fibrillation frequently occurs below and asystole below . The Osborn J may look very similar to those of an acute ST elevation myocardial infarction. Thrombolysis as a reaction to the presence of Osborn J waves is not indicated, as it would only worsen the underlying coagulopathy caused by hypothermia.
Clinicians classify cardiac arrest into "shockable" versus "non–shockable", as determined by the ECG rhythm. This refers to whether a particular class of cardiac dysrhythmia is treatable using defibrillation. The two "shockable" rhythms are ventricular fibrillation and pulseless ventricular tachycardia while the two "non–shockable" rhythms are asystole and pulseless electrical activity.
Myofibre break-up, abbreviated MFB, is associated with ventricular fibrillation leading to death. Histomorphologically, MFB is characterized by fractures of the cardiac myofibres perpendicular to their long axis, with squaring of the myofibre nuclei.
Cardiac resuscitation guidelines (ACLS/BCLS) advise that Cardiopulmonary resuscitation should be initiated promptly to maintain cardiac output until the PEA can be corrected. The approach in treatment of PEA is to treat the underlying cause, if known (e.g. relieving a tension pneumothorax). Where an underlying cause for PEA cannot be determined and/or reversed, the treatment of pulseless electrical activity is similar to that for asystole. There is no evidence that external cardiac compression can increase cardiac output in any of the many scenarios of PEA, such as hemorrhage, in which impairment of cardiac filling is the underlying mechanism producing loss of a detectable pulse.
An intravenous or intraosseous line should be started to provide medications through. The mainstay of drug therapy for PEA is epinephrine (adrenaline) 1 mg every 3–5 minutes. Although previously the use of atropine was recommended in the treatment of PEA/asystole, this recommendation was withdrawn in 2010 by the American Heart Association due to lack of evidence for therapeutic benefit. Epinephrine too has a limited evidence base, and it is recommended on the basis of its mechanism of action.
Sodium bicarbonate 1meq per kilogram may be considered in this rhythm as well, although there is little evidence to support this practice. Its routine use is not recommended for patients in this context, except in special situations (e.g. preexisting metabolic acidosis, hyperkalemia, tricyclic antidepressant overdose).
All of these drugs should be administered along with appropriate CPR techniques. Defibrillators cannot be used to correct this rhythm, as the problem lies in the response of the myocardial tissue to electrical impulses.
Defibrillation is the definitive treatment of ventricular fibrillation, whereby an electrical current is applied to the ventricular mass either directly or externally through pads or paddles, with the aim of depolarising enough of the myocardium for co-ordinated contractions to occur again. The use of this is often dictated around the world by Advanced Cardiac Life Support or Advanced Life Support algorithms, which is taught to medical practitioners including doctors, nurses and paramedics and also advocates the use of drugs, predominantly epinephrine, after every second unsuccessful attempt at defibrillation, as well as cardiopulmonary resuscitation (CPR) in between defibrillation attempts. Though ALS/ACLS algorithms encourage the use of drugs, they state first and foremost that defibrillation should not be delayed for any other intervention and that adequate cardiopulmonary resuscitation be delivered with minimal interruption.
The precordial thump is a manoeuver promoted as a mechanical alternative to defibrillation. Some advanced life support algorithms advocate its use once and only in the case of witnessed and monitored V-fib arrests as the likelihood of it successfully cardioverting a patient are small and this diminishes quickly in the first minute of onset.
Patients who survive a 'V-fib arrest' and who make a good recovery from this are often considered for implantation of an implantable cardioverter-defibrillator, which can quickly deliver this same life-saving defibrillation should another episode of ventricular fibrillation occur outside a hospital environment.
Appropriate clothing helps to prevent hypothermia. Synthetic and wool fabrics are superior to cotton as they provide better insulation when wet and dry. Some synthetic fabrics, such as polypropylene and polyester, are used in clothing designed to wick perspiration away from the body, such as liner socks and moisture-wicking undergarments. Clothing should be loose fitting, as tight clothing reduces the circulation of warm blood. In planning outdoor activity, prepare appropriately for possible cold weather. Those who drink alcohol before or during outdoor activity should ensure at least one sober person is present responsible for safety.
Covering the head is effective, but no more effective than covering any other part of the body. While common folklore says that people lose most of their heat through their heads, heat loss from the head is no more significant than that from other uncovered parts of the body. However, heat loss from the head is significant in infants, whose head is larger relative to the rest of the body than in adults. Several studies have shown that for uncovered infants, lined hats significantly reduce heat loss and thermal stress. Children have a larger surface area per unit mass, and other things being equal should have one more layer of clothing than adults in similar conditions, and the time they spend in cold environments should be limited. However children are often more active than adults, and may generate more heat. In both adults and children, overexertion causes sweating and thus increases heat loss.
Building a shelter can aid survival where there is danger of death from exposure. Shelters can be of many different types, metal can conduct heat away from the occupants and is sometimes best avoided. The shelter should not be too big so body warmth stays near the occupants. Good ventilation is essential especially if a fire will be lit in the shelter. Fires should be put out before the occupants sleep to prevent carbon monoxide poisoning. People caught in very cold, snowy conditions can build an igloo or snow cave to shelter.
The United States Coast Guard promotes using life vests to protect against hypothermia through the 50/50/50 rule: If someone is in water for 50 minutes, he/she has a 50 percent better chance of survival if wearing a life jacket. A heat escape lessening position can be used to increase survival in cold water.
Babies should sleep at 16-20 °C (61-68 °F) and housebound people should be checked regularly to make sure the temperature of the home is at least 18 °C (64 °F).