Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Diagnosis of mitochondrial trifunctional protein deficiency is often confirmed using tandem mass spectrometry. It should be noted that genetic counseling is available for this condition. Additionally the following exams are available:
- CBC
- Urine test
The diagnosis of short-chain acyl-coenzyme A dehydrogenase deficiency is based on the following:
- Newborn screening test
- Genetic testing
- Urine test
It is one of the 29 conditions currently recommended for newborn screening by the American College of Medical Genetics.
The differential diagnosis for short-chain acyl-coenzyme A dehydrogenase deficiency is: ethylmalonic encephalopathy, mitochondrial respiratory chain defects and "multiple" acyl-CoA dehydrogenase deficiency.
Most individuals with SBCADD are identified through newborn screening, where they present with an elevation of a five carbon acylcarnitine species. Confirmatory testing includes plasma and urine analysis to identify the carnitine and glycine conjugates of 2-methylbutyryl-CoA.
On 9 May 2014, the UK National Screening Committee (UK NSC) announced its recommendation to screen every newborn baby in the UK for four further genetic disorders as part of its NHS Newborn Blood Spot Screening programme, including isovaleric acidemia.
Management for mitochondrial trifunctional protein deficiency entails the following:
- Avoiding factors that might precipitate condition
- Glucose
- Low fat/high carbohydrate nutrition
Diagnosis of Fatty-acid metabolism disorder requires extensive lab testing.
Normally, in cases of hypoglycaemia, triglycerides and fatty acids are metabolised to provide glucose/energy. However, in this process, ketones are also produced and ketotic hypoglycaemia is expected. However, in cases where fatty acid metabolism is impaired, a non-ketotic hypoglycaemia may be the result, due to a break in the metabolic pathways for fatty-acid metabolism.
In terms of the diagnosis of adenylosuccinate lyase deficiency one should look for (or exam/method):
- MRI
- Demonstration of Succinylpurines in extracellular fluids like plasma, cerebrospinal fluid (CSF) and/or urine using HPLC or HPLC-MS
- Genetic testing - genomic cDNA sequencing of the ADSL gene and characterization of mutant proteins.
The urine of newborns can be screened for isovaleric acidemia using mass spectrometry, allowing for early diagnosis. Elevations of isovalerylglycine in urine and of isovalerylcarnitine in plasma are found.
Clinically, MCADD or another fatty acid oxidation disorder is suspected in individuals who present with lethargy, seizures, coma and hypoketotic hypoglycemia, particularly if triggered by a minor illness. MCADD can also present with acute liver disease and hepatomegaly, which can lead to a misdiagnosis of Reye syndrome. In some individuals, the only manifestation of MCADD is sudden, unexplained death often preceded by a minor illness that would not usually be fatal.
In areas with expanded newborn screening using tandem mass spectrometry (MS/MS), MCADD is usually detected shortly after birth, by the analysis of blood spots collected on filter paper. Acylcarnitine profiles with MS/MS will show a very characteristic pattern of elevated hexanoylcarnitine (C6), octanoylcarnitine (C8), decanoylcarnitine (C10) or decenoylcarnitine (C10:1), with C8 being greater than C6 and C10. Secondary carnitine deficiency is sometimes seen with MCADD, and in these cases, acylcarnitine profiles may not be informative. Urine organic acid analysis by gas chromatography-mass spectrometry (GC-MS) will show a pattern of dicarboxylic aciduria with low levels of ketones. Traces of acylglycine species may also be detected. Asymptomatic individuals may have normal biochemical lab results. For these individuals, targeted analysis of acylglycine species by GC-MS, specifically hexanoylglycine and suberylglycine can be diagnostic. After biochemical suspicion of MCADD, molecular genetic analysis of "ACADM" can be used to confirm the diagnosis. The analysis of MCAD activity in cultured fibroblasts can also be used for diagnosis.
In cases of sudden death where the preceding illness would not usually have been fatal, MCADD is often suspected. The autopsy will often show fatty deposits in the liver. In cases where MCADD is suspected, acylcarnitine analysis of bile and blood can be undertaken postmortem for diagnosis. Where samples are not available, residual blood from newborn screening may be helpful. Biochemical testing of asymptomatic siblings and parents may also be informative. MCADD and other fatty acid oxidation disorders have been recognized in recent years as undiagnosed causes of sudden infant death syndrome.
Infant mortality is high for patients diagnosed with early onset; mortality can occur within less than 2 months, while children diagnosed with late-onset syndrome seem to have higher rates of survival. Patients suffering from a complete lesion of mut0 have not only the poorest outcome of those suffering from methylaonyl-CoA mutase deficiency, but also of all individuals suffering from any form of methylmalonic acidemia.
Histidenemia is characterized by increased levels of histidine, histamine and imidazole in blood, urine and cerebrospinal fluid. This also results in decreased levels of the metabolite urocanic acid in blood, urine, and skin cells. In Japan, neonatal screening was previously performed on infants within 1 month of birth; infants demonstrating a blood histidine level of 6 mg/dl or more underwent careful testing as suspected histidinemia cases. A typical characteristic of histidinemia is an increase in the blood histidine levels from normal levels (70-120 μM) to an elevated level (290-1420 μM). Further testing includes: observing histidine as well as imidazolepyruvic acid metabolites in the urine. However, neonatal urine testing has been discontinued in most places, with the exception of Quebec.
As one of the urea cycle disorders, citrullinemia type I needs to be distinguished from the others: carbamyl phosphate synthetase deficiency, argininosuccinic acid lyase deficiency, ornithine transcarbamylase deficiency, arginase deficiency, and N-Acetylglutamate synthase deficiency. Other diseases that may appear similar to CTLN1 include the organic acidemias and citrullinemia type II. To diagnose CTLN1, a blood test for citrulline and ammonia levels can indicate the correct diagnosis; high levels of both are indicative of this disorder. Newborns are routinely screened for CTLN1 at birth. A genetic test is the only definitive way to diagnose it.
Standard of care for treatment of CPT II deficiency commonly involves limitations on prolonged strenuous activity and the following dietary stipulations:
- The medium-chain fatty acid triheptanoin appears to be an effective therapy for adult-onset CPT II deficiency.
- Restriction of lipid intake
- Avoidance of fasting situations
- Dietary modifications including replacement of long-chain with medium-chain triglycerides supplemented with L-carnitine
Symptoms can be reduced through avoidance of leucine, an amino acid. Leucine is a component of most protein-rich foods; therefore, a low-protein diet is recommended. Some isolated cases of this disorder have responded to supplemental biotin; this is not altogether surprising, consider that other biotin-related genetic disorders (such as biotinidase deficiency and holocarboxylase synthetase deficiency) can be treated solely with biotin. Individuals with these multiple carboxylase disorders have the same problem with leucine catabolism as those with 3-methylcrotonyl-CoA carboxylase deficiency.
Less than 20 patients with MGA type I have been reported in the literature (Mol Genet Metab. 2011 Nov;104(3):410-3. Epub 2011 Jul 26.)
Diagnostic methods
Diagnosis is based mainly on clinical findings and laboratory test results. Plasma concentrations of ammonia (>150 µmol/L) and citrulline (200-300 µmol/L) are elevated. Elevated levels of argininosuccinic acid (5-110 µmol/L) in the plasma or urine are diagnostic. Molecular genetic testing confirms diagnosis. Newborn screening for ASA is available in the U.S. and parts of Australia, and is considered in several European countries<
A 2006 study of 279 patients found that of those with symptoms (185, 66%), 95% had suffered an encephalopathic crises usually with following brain damage. Of the persons in the study, 49 children died and the median age of death was 6.6 years. A Kaplan-Meier analysis of the data estimated that about 50% of symptomatic cases would die by the age of 25.
One of, if not the most common form of organic acidemia, methylmalonic acidemia is not apparent at birth as symptoms usually do not present themselves until proteins are added to the infant's diet. Because of this, symptoms typically manifest anytime within the first year of life. Due to the severity and rapidity in which this disorder can cause complications when left undiagnosed, screening for methylmalonic acidemia is often included in the newborn screening exam.
Because of the inability to properly break down amino acids completely, the byproduct of protein digestion, the compound methylmalonic acid, is found in a disproportionate concentration in the blood and urine of those afflicted. These abnormal levels are used as the main diagnostic criteria for diagnosing the disorder. This disorder is typically determined through the use of a urine analysis or blood panel. The presence of methylmalonic acidemia can also be suspected through the use of a CT or MRI scan or ammonia test, however these tests are by no means specific and require clinical and metabolic/correlation. Elevated levels of ammonia, glycine, and ketone bodies may also be present in the blood and urine.
Several tests can be done to discover the dysfunction of methylmalonyl-CoA mutase. Ammonia test, blood count, CT scan, MRI scan, electrolyte levels, genetic testing, methylmalonic acid blood test, and blood plasma amino acid tests all can be conducted to determine deficiency.
There is no treatment for complete lesion of the mut0 gene, though several treatments can help those with slight genetic dysfunction. Liver and kidney transplants, and a low-protein diet all help regulate the effects of the diseases.
Treatment of THB deficiencies consists of THB supplementation (2–20 mg/kg per day) or diet to control blood phenylalanine concentration and replacement therapy with neurotransmitters precursors (L-DOPA and 5-HTP) and supplements of folinic acid in DHPR deficiency.
Tetrahydrobiopterin is available as a tablet for oral administration in the form of "tetrahydrobiopterin dihydrochloride" (BH4*2HCL). BH4*2HCL is FDA approved under the trade name Kuvan. The typical cost of treating a patient with Kuvan is $100,000 per year. BioMarin holds the patent for Kuvan until at least 2024, but Par Pharmaceutical has a right to produce a generic version by 2020. BH4*2HCL is indicated at least in tetrahydrobiopterin deficiency caused by GTPCH deficiency or PTPS deficiency.
This condition is very rare; approximately 600 cases have been reported worldwide. In most parts of the world, only 1% to 2% of all infants with high phenylalanine levels have this disorder. In Taiwan, about 30% of newborns with elevated levels of phenylalanine have a deficiency of THB.
A 1994 study of the entire population of New South Wales (Australia) found 20 patients. Of these, 5 (25%) had died at or before 30 months of age. Of the survivors, 1 (5%) was severely disabled and the remainder had either suffered mild disability or were making normal progress in school. A 2006 Dutch study followed 155 cases and found that 27 individuals (17%) had died at an early age. Of the survivors, 24 (19%) suffered from some degree of disability, of which most were mild. All the 18 patients diagnosed neonatally were alive at the time of the follow-up.
It has been suggested that a possible method of treatment for histidinemia is through the adoption of a diet that is low in histidine intake. However, the requirement for such dietary restrictions is typically unnecessary for 99% of all cases of histidinemia.