Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
It is one of the 29 conditions currently recommended for newborn screening by the American College of Medical Genetics.
The diagnosis of short-chain acyl-coenzyme A dehydrogenase deficiency is based on the following:
- Newborn screening test
- Genetic testing
- Urine test
Most individuals with SBCADD are identified through newborn screening, where they present with an elevation of a five carbon acylcarnitine species. Confirmatory testing includes plasma and urine analysis to identify the carnitine and glycine conjugates of 2-methylbutyryl-CoA.
The differential diagnosis for short-chain acyl-coenzyme A dehydrogenase deficiency is: ethylmalonic encephalopathy, mitochondrial respiratory chain defects and "multiple" acyl-CoA dehydrogenase deficiency.
Elevated levels of serum cholestanol are diagnostic of CTX. Alternatively analysis of 27-hydroxycholesterol and 7 alpha hydroxycholesterol can be used. Genetic testing of the CYP27A1 gene is confirmatory and is increasingly being used as a first line test as part of symptom specific gene panels (genetic eye disease, ataxia, dementia).
The diagnosis is based on clinical features, with a concomitant decreased blood adenosine deaminase level supporting the diagnosis.
MDDS is diagnosed based on systemic symptoms presenting in infants, followed by a clinical examination and laboratory tests (for example, high lactate levels are common) medical imaging, and usually is finally confirmed and formally identified by genetic testing.
Clinically, MCADD or another fatty acid oxidation disorder is suspected in individuals who present with lethargy, seizures, coma and hypoketotic hypoglycemia, particularly if triggered by a minor illness. MCADD can also present with acute liver disease and hepatomegaly, which can lead to a misdiagnosis of Reye syndrome. In some individuals, the only manifestation of MCADD is sudden, unexplained death often preceded by a minor illness that would not usually be fatal.
In areas with expanded newborn screening using tandem mass spectrometry (MS/MS), MCADD is usually detected shortly after birth, by the analysis of blood spots collected on filter paper. Acylcarnitine profiles with MS/MS will show a very characteristic pattern of elevated hexanoylcarnitine (C6), octanoylcarnitine (C8), decanoylcarnitine (C10) or decenoylcarnitine (C10:1), with C8 being greater than C6 and C10. Secondary carnitine deficiency is sometimes seen with MCADD, and in these cases, acylcarnitine profiles may not be informative. Urine organic acid analysis by gas chromatography-mass spectrometry (GC-MS) will show a pattern of dicarboxylic aciduria with low levels of ketones. Traces of acylglycine species may also be detected. Asymptomatic individuals may have normal biochemical lab results. For these individuals, targeted analysis of acylglycine species by GC-MS, specifically hexanoylglycine and suberylglycine can be diagnostic. After biochemical suspicion of MCADD, molecular genetic analysis of "ACADM" can be used to confirm the diagnosis. The analysis of MCAD activity in cultured fibroblasts can also be used for diagnosis.
In cases of sudden death where the preceding illness would not usually have been fatal, MCADD is often suspected. The autopsy will often show fatty deposits in the liver. In cases where MCADD is suspected, acylcarnitine analysis of bile and blood can be undertaken postmortem for diagnosis. Where samples are not available, residual blood from newborn screening may be helpful. Biochemical testing of asymptomatic siblings and parents may also be informative. MCADD and other fatty acid oxidation disorders have been recognized in recent years as undiagnosed causes of sudden infant death syndrome.
Diagnosis of mitochondrial trifunctional protein deficiency is often confirmed using tandem mass spectrometry. It should be noted that genetic counseling is available for this condition. Additionally the following exams are available:
- CBC
- Urine test
Whether MTHFR deficiency has any effect at all on all-cause mortality is unclear. One Dutch study showed that the MTHFR mutation was more prevalent in younger individuals (36% relative to 30%), and found that elderly men with MTHFR had an elevated mortality rate, attributable to cancer. Among women, however, no difference in life expectancy was seen. More recently, however, a meta-analysis has shown that overall cancer rates are barely increased with an odds ratio of 1.07, which suggests that an impact on mortality from cancer is small or zero.
Symptoms can be reduced through avoidance of leucine, an amino acid. Leucine is a component of most protein-rich foods; therefore, a low-protein diet is recommended. Some isolated cases of this disorder have responded to supplemental biotin; this is not altogether surprising, consider that other biotin-related genetic disorders (such as biotinidase deficiency and holocarboxylase synthetase deficiency) can be treated solely with biotin. Individuals with these multiple carboxylase disorders have the same problem with leucine catabolism as those with 3-methylcrotonyl-CoA carboxylase deficiency.
Infant mortality is high for patients diagnosed with early onset; mortality can occur within less than 2 months, while children diagnosed with late-onset syndrome seem to have higher rates of survival. Patients suffering from a complete lesion of mut0 have not only the poorest outcome of those suffering from methylaonyl-CoA mutase deficiency, but also of all individuals suffering from any form of methylmalonic acidemia.
Less than 20 patients with MGA type I have been reported in the literature (Mol Genet Metab. 2011 Nov;104(3):410-3. Epub 2011 Jul 26.)
A 2006 study of 279 patients found that of those with symptoms (185, 66%), 95% had suffered an encephalopathic crises usually with following brain damage. Of the persons in the study, 49 children died and the median age of death was 6.6 years. A Kaplan-Meier analysis of the data estimated that about 50% of symptomatic cases would die by the age of 25.
A 1994 study of the entire population of New South Wales (Australia) found 20 patients. Of these, 5 (25%) had died at or before 30 months of age. Of the survivors, 1 (5%) was severely disabled and the remainder had either suffered mild disability or were making normal progress in school. A 2006 Dutch study followed 155 cases and found that 27 individuals (17%) had died at an early age. Of the survivors, 24 (19%) suffered from some degree of disability, of which most were mild. All the 18 patients diagnosed neonatally were alive at the time of the follow-up.
Standard of care for treatment of CPT II deficiency commonly involves limitations on prolonged strenuous activity and the following dietary stipulations:
- The medium-chain fatty acid triheptanoin appears to be an effective therapy for adult-onset CPT II deficiency.
- Restriction of lipid intake
- Avoidance of fasting situations
- Dietary modifications including replacement of long-chain with medium-chain triglycerides supplemented with L-carnitine
On 9 May 2014, the UK National Screening Committee (UK NSC) announced its recommendation to screen every newborn baby in the UK for four further genetic disorders as part of its NHS Newborn Blood Spot Screening programme, including isovaleric acidemia.
Stress caused by infection, fever or other demands on the body may lead to worsening of the signs and symptoms, with only partial recovery.
Management for mitochondrial trifunctional protein deficiency entails the following:
- Avoiding factors that might precipitate condition
- Glucose
- Low fat/high carbohydrate nutrition
The prevalence of 677T homozygozity varies with race. 18-21% of Hispanics and Southern Mediterranean populations have this variant, as do 6-14% of North American Caucasians and <2% of Blacks living outside of Africa.
The prevalence of the 1298C mutation is lower, at 4-12% for most tested populations.
A study in 2000 had identified only 24 cases of severe MTHFR deficiency (from nonsense mutations) across the whole world.
Treatment of THB deficiencies consists of THB supplementation (2–20 mg/kg per day) or diet to control blood phenylalanine concentration and replacement therapy with neurotransmitters precursors (L-DOPA and 5-HTP) and supplements of folinic acid in DHPR deficiency.
Tetrahydrobiopterin is available as a tablet for oral administration in the form of "tetrahydrobiopterin dihydrochloride" (BH4*2HCL). BH4*2HCL is FDA approved under the trade name Kuvan. The typical cost of treating a patient with Kuvan is $100,000 per year. BioMarin holds the patent for Kuvan until at least 2024, but Par Pharmaceutical has a right to produce a generic version by 2020. BH4*2HCL is indicated at least in tetrahydrobiopterin deficiency caused by GTPCH deficiency or PTPS deficiency.
The most characteristic biochemical indicator of SLOS is an increased concentration of 7DHC (reduced cholesterol levels are also typical, but appear in other disorders as well). Thus, prenatally, SLOS is diagnosed upon finding an elevated 7DHC:total sterol ratio in fetal tissues, or increased levels of 7DHC in amniotic fluid. The 7DHC:total sterol ratio can be measured at 11–12 weeks of gestation by chorionic villus sampling, and elevated 7DHC in amniotic fluid can be measured by 13 weeks. Furthermore, if parental mutations are known, DNA testing of amniotic fluid or chorionic villus samples may be performed.
Amniocentesis (process of sampling amniotic fluid) and chorionic villus sampling cannot be performed until approximately 3 months into the pregnancy. Given that SLOS is a very severe syndrome, parents may want to choose to terminate their pregnancy if their fetus is affected. Amniocentesis and chorionic villus sampling leave very little time to make this decision (abortions become more difficult as the pregnancy advances), and can also pose severe risks to the mother and baby. Thus, there is a very large desire for noninvasive midgestation diagnostic tests. Examining the concentrations of sterols in maternal urine is one potential way to identify SLOS prenatally. During pregnancy, the fetus is solely responsible for synthesizing the cholesterol needed to produce estriol. A fetus with SLOS cannot produce cholesterol, and may use 7DHC or 8DHC as precursors for estriol instead. This creates 7- or 8-dehydrosteroids (such as 7-dehydroestriol), which may show up in the maternal urine. These are novel metabolites due to the presence of a normally reduced double bond at carbon 7 (caused by the inactivity of DHCR7), and may be used as indicators of SLOS. Other cholesterol derivatives which possess a double bond at the 7th or 8th position and are present in maternal urine may also be indicators of SLOS. 7- and 8-dehydropregnanetriols have been shown to be present in the urine of mothers with an affected fetus but not with an unaffected fetus, and thus are used in diagnosis. These pregnadienes originated in the fetus and traveled through the placenta before reaching the mother. Their excretion indicates that neither the placenta nor the maternal organs have necessary enzymes needed to reduce the double bond of these novel metabolites.
On September 1990, the first gene therapy to combat this disease was performed by Dr. William French Anderson on a four-year-old girl, Ashanti DeSilva, at the National Institutes of Health, Bethesda, Maryland, U.S.A.
In April 2016 the Committee for Medicinal Products for Human Use of the European Medicines Agency endorsed and recommended for approval a stem cell gene therapy called Strimvelis, for children with ADA-SCID for whom no matching bone marrow donor is available.
The urine of newborns can be screened for isovaleric acidemia using mass spectrometry, allowing for early diagnosis. Elevations of isovalerylglycine in urine and of isovalerylcarnitine in plasma are found.
Several tests can be done to discover the dysfunction of methylmalonyl-CoA mutase. Ammonia test, blood count, CT scan, MRI scan, electrolyte levels, genetic testing, methylmalonic acid blood test, and blood plasma amino acid tests all can be conducted to determine deficiency.
There is no treatment for complete lesion of the mut0 gene, though several treatments can help those with slight genetic dysfunction. Liver and kidney transplants, and a low-protein diet all help regulate the effects of the diseases.