Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Norrie disease and other NDP related diseases are diagnosed with the combination of clinical findings and molecular genetic testing. Molecular genetic testing identifies the mutations that cause the disease in about 85% of affected males. Clinical diagnoses rely on ocular findings. Norrie disease is diagnosed when grayish-yellow fibrovascular masses are found behind the eye from birth through three months. Doctors also look for progression of the disease from three months through 8–10 years of age. Some of these progressions include cataracts, iris atrophy, shallowing of anterior chamber, and shrinking of the globe. By this point, people with the condition either have only light perception or no vision at all.
Molecular genetic testing is used for more than an initial diagnosis. It is used to confirm diagnostic testing, for carrier testing females, prenatal diagnosis, and preimplantation genetic diagnosis. There are three types of clinical molecular genetic testing. In approximately 85% of males, mis-sense and splice mutations of the NDP gene and partial or whole gene deletions are detected using sequence analysis. Deletion/duplication analysis can be used to detect the 15% of mutations that are submicroscopic deletions. This is also used when testing for carrier females. The last testing used is linkage analysis, which is used when the first two are unavailable. Linkage analysis is also recommended for those families who have more than one member affected by the disease.
On MRI the retinal dysplasia that occurs with the syndrome can be indistinguishable from persistent hyperplastic primary vitreous, or the dysplasia of trisomy 13 and Walker–Warburg syndrome.
Genetic testing can confirm albinism and what variety it is, but offers no medical benefits except in the cases of non-OCA disorders that cause albinism "along with" other medical problems which may be treatable. There is no 'cure' for Albinism. The "symptoms" of albinism can be assisted by various methods.
Diagnosis can be made solely on the basis of history and physical examination in people who present with only facial asymmetry. For those who report neurological symptoms such as migraine or seizures, MRI scan of the brain is the imaging modality of choice. A diagnostic lumbar puncture and serum test for autoantibodies may also be indicated in people who present with a seizure disorder of recent onset.
Since there is no cure for albinism, it is managed through lifestyle adjustments. People with albinism need to take care not to sunburn and should have regular healthy skin checks by a dermatologist.
For the most part, treatment of the eye conditions consists of visual rehabilitation. Surgery is possible on the extra-ocular muscles to decrease strabismus. Nystagmus-damping surgery can also be performed, to reduce the "shaking" of the eyes back and forth. The effectiveness of all these procedures varies greatly and depends on individual circumstances.
Glasses, low vision aids, large-print materials, and bright angled reading lights can help individuals with albinism. Some people with albinism do well using bifocals (with a strong reading lens), prescription reading glasses, hand-held devices such as magnifiers or monoculars or wearable devices like eSight
and Brainport.
Albinism is often associated with the absence of an iris in the eye. Contact lenses may be colored to block light transmission through the aniridic eye. Some use bioptics, glasses which have small telescopes mounted on, in, or behind their regular lenses, so that they can look through either the regular lens or the telescope. Newer designs of bioptics use smaller light-weight lenses. Some US states allow the use of bioptic telescopes for driving motor vehicles. (See also NOAH bulletin "Low Vision Aids".)
To support those with albinism, and their families, the National Organization for Albinism and Hypopigmentation was set up to provide a network of resources and information.
Corneal and Retinal Topography: computerized tests that maps the surface of the retina, or the curvature of the cornea.
Fluorescein Angiogram: evaluation of blood circulation in the retina.
Dilated Pupillary Exam: special drops expand the pupil, which then allows doctors to examine the retina.
Slit-Lamp Exam: By shining a small beam of light in the eye, eye doctors can diagnose cataracts, glaucoma, retinal detachment, macular degeneration, injuries to the cornea, and dry eye disease.
Ultrasound: Provides a picture of the eye’s internal structure, and can evaluate ocular tumors, or the retina if its suffering from cataracts or hemorrhages.
Since the condition appears to slowly subside or diminish on its own, there are no specific treatments for this condition available.
Some precautions include regular visits to an ophthalmologist or optometrist and general testing of the pupil and internal eye through fundamental examinations (listed below). The examinations can determine if any of the muscles of the eye or retina, which is linked to the pupil, have any problems that could relate to the tadpole pupil condition.
On photographs taken using a flash, instead of the familiar red-eye effect, leukocoria can cause a bright white reflection in an affected eye. Leukocoria may appear also in low indirect light, similar to eyeshine.
Leukocoria can be detected by a routine eye exam (see Ophthalmoscopy). For screening purposes, the red reflex test is used. In this test, when a light is shone briefly through the pupil, an orange red reflection is normal. A white reflection is leukocoria.
Diagnosis of ARN is outlined by the American Uveitis Society. Though most diagnosis's of ARN are made by clinical features, a physician may take a vitreous sample and have it tested for herpes markers. Common lab tests that are run on the sample include a viral culture, viral PCR, direct/indirect immunofluorescence, viral antibody measurement.
The American Uveitis Society has established the following guidelines for ARN diagnosis:
1. Retinal necrosis with one or more focus points borders in the peripheral retina
2. In the absence of antiviral treatment, the condition progresses rapidly
3. Spreading to the surroundings
4. Buildup of blood vessels
5. Inflammation of the vitreous.
The Ishihara color test, which consists of a series of pictures of colored spots, is the test most often used to diagnose red–green color deficiencies. A figure (usually one or more Arabic digits) is embedded in the picture as a number of spots in a slightly different color, and can be seen with normal color vision, but not with a particular color defect. The full set of tests has a variety of figure/background color combinations, and enable diagnosis of which particular visual defect is present. The anomaloscope, described above, is also used in diagnosing anomalous trichromacy.
Because the Ishihara color test contains only numerals, it may not be useful in diagnosing young children, who have not yet learned to use numerals. In the interest of identifying these problems early on in life, alternative color vision tests were developed using only symbols (square, circle, car).
Besides the Ishihara color test, the US Navy and US Army also allow testing with the Farnsworth Lantern Test. This test allows 30% of color deficient individuals, whose deficiency is not too severe, to pass.
Another test used by clinicians to measure chromatic discrimination is the Farnsworth-Munsell 100 hue test. The patient is asked to arrange a set of colored caps or chips to form a gradual transition of color between two anchor caps.
The HRR color test (developed by Hardy, Rand, and Rittler) is a red–green color test that, unlike the Ishihara, also has plates for the detection of the tritan defects.
Most clinical tests are designed to be fast, simple, and effective at identifying broad categories of color blindness. In academic studies of color blindness, on the other hand, there is more interest in developing flexible tests to collect thorough datasets, identify copunctal points, and measure just noticeable differences.
Imaging studies such as ultrasonography (US), Computerized Tomography (CT) and Magnetic Resonance Imaging (MRI) can aid diagnosis. On ultrasound, Coats' disease appears as a hyperechoic mass in the posterior vitreous without posterior acoustic shadowing; vitreous and subretinal hemorrhage may often be observed.
On CT, the globe appears hyperdense compared to normal vitreous due to the proteinaceous exudate, which may obliterate the vitreous space in advanced disease. The anterior margin of the subretinal exudate enhances with contrast. Since the retina is fixed posteriorly at the optic disc, this enhancement has a V-shaped configuration.
On MRI, the subretinal exudate shows high signal intensity on both T1- and T2-weighted images. The exudate may appear heterogeneous if hemorrhage or fibrosis is present. The subretinal space does not enhance with gadolinium contrast. Mild to moderate linear enhancement may be seen between the exudate and the remaining vitreous. The exudate shows a large peak at 1-1.6 ppm on proton MR spectroscopy.
There are a number of different treatments to deal with TSPK. Symptoms may disappear if untreated, but treatment may decrease both the healing time and the chances of remission.
- PRK laser eye surgery may cure this disease (NOTE: A full clinical study has not been done, but a case study of one person was reported in 2002 PRK-pTK as a treatment).
- Artificial tear eye-drops or ointments may be a suitable treatment for mild cases.
- Low-dosage steroidal eye-drops, such as prednisone, fluorometholone, loteprednol (Lotemax 0.5%) or rimexolone. Steroidal drops should be used with caution and the eye pressure should be regularly checked during treatment.
- Soft contact lenses.
- Ciclosporin is an experimental treatment for TSPK. It is usually used during transplants as it reduces the immune system response.
- Tacrolimus (Protopic 0.03% ointment) is also an experimental treatment.
- Laser eye treatment.
- Amniotic membrane (Case Study)
The diagnosis of episcleritis is based upon the history and physical examination. The history should be explored for the presence of the diseases associated with episcleritis, and the symptoms they cause, such as rash, arthritis, venereal disease, and recent viral infection. Episcleritis may be differentiated from scleritis by using phenylephrine or neosynephrine eye drops, which causes blanching of the blood vessels in episcleritis, but not in scleritis. A blue color to the sclera suggests scleritis, rather than episcleritis.
After anesthetizing the eye with medication, the conjunctiva may be moved with a cotton swab to observe the location of the enlarged blood vessels.
There is generally no treatment to cure achromatopsia. However, dark red or plum colored filters are very helpful in controlling light sensitivity.
Since 2003, there is a cybernetic device called eyeborg that allows people to perceive color through sound waves. Achromatopsic artist Neil Harbisson was the first to use such a device in early 2004, the eyeborg allowed him to start painting in color by memorizing the sound of each color.
Moreover, there is some research on gene therapy for animals with achromatopsia, with positive results on mice and young dogs, but less effectiveness on older dogs. However, no experiments have been made on humans. There are many challenges to conducting gene therapy on humans. See Gene therapy for color blindness for more details about it.
Grossly, retinal detachment and yellowish subretinal exudate containing cholesterol crystals are commonly seen.
Microscopically, the wall of retinal vessels may be thickened in some cases, while in other cases the wall may be thinned with irregular dilatation of the lumen. The subretinal exudate consists of cholesterol crystals, macrophages laden with cholesterol and pigment, erythrocytes, and hemosiderin. A granulomatous reaction, induced by the exudate, may be seen with the retina. Portions of the retina may develop gliosis as a response to injury.
Dry eyes can usually be diagnosed by the symptoms alone. Tests can determine both the quantity and the quality of the tears. A slit lamp examination can be performed to diagnose dry eyes and to document any damage to the eye.
A Schirmer's test can measure the amount of moisture bathing the eye. This test is useful for determining the severity of the condition. A five-minute Schirmer's test with and without anesthesia using a Whatman #41 filter paper 5 mm wide by 35 mm long is performed. For this test, wetting under 5 mm with or without anesthesia is considered diagnostic for dry eyes.
If the results for the Schirmer's test are abnormal, a Schirmer II test can be performed to measure reflex secretion. In this test, the nasal mucosa is irritated with a cotton-tipped applicator, after which tear production is measured with a Whatman #41 filter paper. For this test, wetting under 15 mm after five minutes is considered abnormal.
A tear breakup time (TBUT) test measures the time it takes for tears to break up in the eye. The tear breakup time can be determined after placing a drop of fluorescein in the cul-de-sac.
A tear protein analysis test measures the lysozyme contained within tears. In tears, lysozyme accounts for approximately 20 to 40 percent of total protein content.
A lactoferrin analysis test provides good correlation with other tests.
The presence of the recently described molecule Ap4A, naturally occurring in tears, is abnormally high in different states of ocular dryness. This molecule can be quantified biochemically simply by taking a tear sample with a plain Schirmer test. Utilizing this technique it is possible to determine the concentrations of Ap4A in the tears of patients and in such way diagnose objectively if the samples are indicative of dry eye.
The Tear Osmolarity Test has been proposed as a test for dry eye disease. Tear osmolarity may be a more sensitive method of diagnosing and grading the severity of dry eye compared to corneal and conjunctival staining, tear break-up time, Schirmer test, and meibomian gland grading. Others have recently questioned the utility of tear osmolarity in monitoring dry eye treatment.
Scleritis is best detected by examining the sclera in daylight; retracting the lids helps determine the extent of involvement. Other aspects of the eye exam (i.e. visual acuity testing, slit lamp examination, etc.) may be normal. Scleritis may be differentiated from episcleritis by using phenylephrine or neosynephrine eye drops, which causes blanching of the blood vessels in episcleritis, but not in scleritis.
Ancillary tests CT scans, MRIs, and ultrasonographies can be helpful, but do not replace the physical examination.
Affected individuals may benefit from autologous fat transfer or fat grafts to restore a more normal contour to the face. However, greater volume defects may require microsurgical reconstructive surgery which may involve the transfer of an island parascapular fasciocutaneous flap or a free flap from the groin, rectus abdominis muscle (Transverse Rectus Abdominis Myocutaneous or "TRAM" flap) or latissimus dorsi muscle to the face. Severe deformities may require additional procedures, such as pedicled temporal fascia flaps, cartilage grafts, bone grafts, orthognathic surgery, and bone distraction. The timing of surgical intervention is controversial; some surgeons prefer to wait until the disease has run its course while others recommend early intervention.
Diagnosis includes dilated fundus examination to rule out posterior uveitis, which presents with white spots across the retina along with retinitis and vasculitis.
Laboratory testing is usually used to diagnose specific underlying diseases, including rheumatologic tests (e.g. antinuclear antibody, rheumatoid factor, angiotensin converting enzyme inhibitor <-- error) and serology for infectious diseases (Syphilis, Toxoplasmosis, Tuberculosis).
Major histocompatibility antigen testing may be performed to investigate genetic susceptibility to uveitis. The most common antigens include HLA-B27, HLA-A29 (in birdshot chorioretinopathy) and HLA-B51 (in Behçet disease).
Radiology X-ray may be used to show coexisting arthritis and chest X-ray may be helpful in sarcoidosis.
In a study done published by the British Journal of Ophthalmology, the cases of ARN/BARN reported in 2001-2002 in the UK, Varicella Zoster Virus was the most common culprit for the disease and presented mostly in men than in women.
Researchers have also looked at two cases of ARN in patients who have been diagnosed with an immunodeficiency virus. The disease presented itself more so in the outer retina until it progressed far enough to then affect the inner retina. The patients were not so responsive to the antiviral agents given to them through an IV, acyclovir specifically. The cases progressed to retinal detachment. The patients tested positive for the herpes virus. Researchers are now wondering if this type of ARN is specific to those who have the immunodeficiency virus.
There is no way to prevent keratoconjunctivitis sicca. Complications can be prevented by use of wetting and lubricating drops and ointments.
Optometrists can supply colored spectacle lenses or a single red-tint contact lens to wear on the non-dominant eye, but although this may improve discrimination of some colors, it can make other colors more difficult to distinguish. A 1981 review of various studies to evaluate the effect of the X-chrom contact lens concluded that, while the lens may allow the wearer to achieve a better score on certain color vision tests, it did not correct color vision in the natural environment. A case history using the X-Chrom lens for a rod monochromat is reported and an X-Chrom manual is online.
Lenses that filter certain wavelengths of light can allow people with a cone anomaly, but not dichromacy, to see better separation of colors, especially those with classic "red/green" color blindness. They work by notching out wavelengths that strongly stimulate both red and green cones in a deuter- or protanomalous person, improving the distinction between the two cones' signals. As of 2013, sunglasses that notch out color wavelengths are available commercially.
Scleritis can be classified as anterior scleritis and posterior scleritis. Anterior scleritis is the most common variety, accounting for about 98% of the cases. It is of two types : Non-necrotising and necrotising. Non-necrotising scleritis is the most common, and is further classified into diffuse and nodular type based on morphology. Necrotising scleritis accounts for 13% of the cases. It can occur with or without inflammation.
Episcleritis is a benign, self-limiting condition, meaning patients recover without any treatment. Most cases of episcleritis resolve within 7–10 days. The nodular type is more aggressive and takes longer to resolve. Although rare, some cases may progress to scleritis. However, in general, episcleritis does not cause complications in the eye. Smoking tobacco delays the response to treatment in patients with episcleritis.
Diagnosis is clinical, seeking a history of eye injury. An important differential diagnosis is Vogt-Koyanagi-Harada syndrome (VKH), which is thought to have the same pathogenesis, without a history of surgery or penetrating eye injury.
Still experimental, skin tests with soluble extracts of human or bovine uveal tissue are said to elicit delayed hypersensitivity responses in these patients. Additionally, circulating antibodies to uveal antigens have been found in patients with SO and VKH, as well as those with long-standing uveitis, making this a less than specific assay for SO and VKH.
Achromatopsia (ACHM), also known as total color blindness, is a medical syndrome that exhibits symptoms relating to at least five conditions. The term may refer to acquired conditions such as cerebral achromatopsia, also known as color agnosia, but it typically refers to an autosomal recessive congenital color vision condition, the inability to perceive color and to achieve satisfactory visual acuity at high light levels (typically exterior daylight). The syndrome is also present in an incomplete form which is more properly defined as dyschromatopsia. It is estimated to affect 1 in 40,000 live births worldwide.
There is some discussion as to whether achromats can see color or not. As illustrated in "The Island of the Colorblind" by Oliver Sacks, some achromats cannot see color, only black, white, and shades of grey. With five different genes currently known to cause similar symptoms, it may be that some do see marginal levels of color differentiation due to different gene characteristics. With such small sample sizes and low response rates, it is difficult to accurately diagnose the 'typical achromatic conditions'. If the light level during testing is optimized for them, they may achieve corrected visual acuity of 20/100 to 20/150 at lower light levels, regardless of the absence of color. One common trait is hemeralopia or blindness in full sun. In patients with achromatopsia, the cone system and fibres carrying color information remain intact. This indicates that the mechanism used to construct colors is defective.