Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
In laboratory animals, prevention includes a low-stress environment, an adequate amount of nutritional feed, and appropriate sanitation measurements. Because animals likely ingest bacterial spores from contaminated bedding and feed, regular cleaning is a helpful method of prevention. No prevention methods are currently available for wild animal populations.
Currently, antibiotic drugs such as penicillin or tetracycline are the only effective methods for disease treatment. Within wild populations, disease control consists of reducing the amount of bacterial spores present in the environment. This can be done by removing contaminated carcasses and scat.
Zymotic disease was a 19th-century medical term for acute infectious diseases, especially "chief fevers and contagious diseases (e.g. typhus and typhoid fevers, smallpox, scarlet fever, measles, erysipelas, cholera, whooping-cough, diphtheria, &c.)".
Zyme or microzyme was the name of the organism presumed to be the cause of the disease.
As originally employed by Dr W. Farr, of the British Registrar-General's department, the term included the diseases which were "epidemic, endemic and contagious," and were regarded as owing their origin to the presence of a morbific principle in the system, acting in a manner analogous to, although not identical with, the process of fermentation.
In the late 19th century, Antoine Béchamp proposed that tiny organisms he termed "microzymas", and not cells, are the fundamental building block of life. Bechamp claimed these microzymas are present in all things—animal, vegetable, and mineral—whether living or dead . Microzymas are what coalesce to form blood clots and bacteria. Depending upon the condition of the host, microzymas assume various forms. In a diseased body, the microzymas become pathological bacteria and viruses. In a healthy body, microzymas form healthy cells. When a plant or animal dies, the microzymas live on. His ideas did not gain acceptance.
The word "zymotic" comes from the Greek word ζυμοῦν "zumoûn" which means "to ferment". It was in British official use from 1839. This term was used extensively in the English Bills of Mortality as a cause of death from 1842. Robert Newstead (1859–1947) used this term in a 1908 publication in the "Annals of Tropical Medicine and Parasitology", to describe the contribution of house flies ("Musca domestica") towards the spread of infectious diseases. However, by the early 1900s, bacteriology "displaced the old fermentation theory", and so the term became obsolete.
In her "Diagram of the causes of mortality in the army in the East", Florence Nightingale depicts The blue wedges measured from the centre of the circle represent area for area the deaths from Preventible or Mitigable Zymotic diseases ; the red wedges measured from the centre the deaths from wounds, & the black wedges measured from the centre the deaths from all other causes.
The disease is regarded as extremely rare, with an incidence (new number of cases per year) of one case per million people. The patients are predominantly male (86% in a survey of American patients), although in some countries the rate of women receiving a diagnosis of Whipple's disease has increased in recent years. It occurs predominantly in those of Caucasian ethnicity, suggesting a genetic predisposition in that population.
"T. whipplei" appears to be an environmental organism that is commonly present in the gasterointestinal tract but remains asymptomatic. Several lines of evidence suggest that some defect—inherited or acquired—in immunity is required for it to become pathogenic. The possible immunological defect may be specific for "T. whipplei", since the disease is not associated with a substantially increased risk of other infections.
The disease is usually diagnosed in middle age (median 49 years). Studies from Germany have shown that age at diagnosis has been rising since the 1960s.
Prevention is through use of Stock coryza-free birds. In other areas culling of the whole flock is a good means of the disease control. Bacterin also is used at a dose of two to reduce brutality of the disease. Precise exposure has also has been used but it should be done with care. Vaccination of the chicks is done in areas with high disease occurrence. Treatment is done by using antibiotics such as erythromycin, Dihydrostreptomycin, Streptomycin sulphonamides, tylosin and Flouroquinolones .
White band disease (Acroporid white syndrome) is a coral disease that affects acroporid corals and is distinguishable by the white band of dead coral tissue that it forms. The disease completely destroys the coral tissue of Caribbean acroporid corals, specifically elkhorn coral ("Acropora palmata") and staghorn coral ("A. cervicornis"). The disease exhibits a pronounced division between the remaining coral tissue and the exposed coral skeleton. These symptoms are similar to white plague, except that white band disease is only found on acroporid corals, and white plague has not been found on any acroporid corals. It is part of a class of similar disease known as "white syndromes", many of which may be linked to species of "Vibrio" bacteria. While the pathogen for this disease has not been identified, "Vibrio carchariae" may be one of its factors. The degradation of coral tissue usually begins at the base of the coral, working its way up to the branch tips, but it can begin in the middle of a branch.
Pogosta disease is a viral disease, established to be identical with other diseases, Karelian fever and Ockelbo disease. The names are derived from the words Pogosta, Karelia and Ockelbo, respectively.
The symptoms of the disease include usually rash, as well as mild fever and other flu-like symptoms; in most cases the symptoms last less than 5 days. However, in some cases, the patients develop a painful arthritis. There are no known chemical agents available to treat the disease.
It has long been suspected that the disease is caused by a Sindbis-like virus, a positive-stranded RNA virus belonging to the Alphavirus genus and family Togaviridae. In 2002 a strain of Sindbis was isolated from patients during an outbreak of the Pogosta disease in Finland, confirming the hypothesis.
This disease is mainly found in the Eastern parts of Finland; a typical Pogosta disease patient is a middle-aged person who has been infected through a mosquito bite while picking berries in the autumn. The prevalence of the disease is about 100 diagnosed cases every year, with larger outbreaks occurring in 7-year intervals.
The reservoirs of the disease are carrier chickens which could be health but harboring the disease or chronically sick chickens. The disease affects all ages of chickens. The disease can persist in the flock for 2-3 weeks and signs of the disease are seen between 1–3 days post infection. Transmission of the disease is through direct interaction, airborne droplets and drinking contaminated water. Chicken having infection and those carriers contribute highly to the disease transmission
Treatment is with penicillin, ampicillin, tetracycline, or co-trimoxazole for one to two years. Any treatment lasting less than a year has an approximate relapse rate of 40%. Recent expert opinion is that Whipple's disease should be treated with doxycycline with hydroxychloroquine for 12 to 18 months. Sulfonamides (sulfadiazine or sulfamethoxazole) may be added for treatment of neurological symptoms.
Morbidity and mortality range from both extremes as the significance correlate with the underlying systemic disease.
Bright's disease is a historical classification of kidney diseases that would be described in modern medicine as acute or chronic nephritis. It was characterized by swelling, the presence of albumin in the urine and was frequently accompanied by high blood pressure and heart disease.
Some herbaceous hosts naturally have the Cherry X Disease. Once the spreads to the cherry hosts, with the help of the mountain leafhoppers, the cherry leafhoppers can spread the disease around to other woody hosts. Here are some approaches at management with each host type:
Bright's disease was historically 'treated' with warm baths, blood-letting, squill, digitalis, mercuric compounds, opium, diuretics, laxatives, and dietary therapy, including abstinence from alcoholic drinks, cheese and red meat. Arnold Ehret was diagnosed with Bright's disease and pronounced incurable by 24 of Europe's most respected doctors; he designed "The Mucusless Diet Healing System", which apparently cured his illness. William Howard Hay, MD had the illness and, it is claimed, cured himself using the Hay diet.
There are numerous steps one has to take to try to manage the disease as best as possible. The aim is at prevention because once the pathogen reaches the cherry trees, disease will surely ensue and there is no cure or remedy to prevent the loss of fruit production as well as the ultimate death of the tree.
There seems to be beneficial responses to clindamycin therapy as the lesions regress. This leads to the hypothesis that microorganisms may be playing a role in the initial stages of Kyrle disease.
A family with Kyrle disease were examined which their skin lesions were benign. However, when three of the young adult members were closely examined, they had posterior subcapsular cataracts and two of those three developed multiple tiny yellow-brown anterior stromal corneal opacities. In order to determine if there is any correlation between Kyrle disease and the ocular observations, more cases of Kyrle disease are to be analyzed.
All in all, since Kyrle disease is relatively rare, more cases need to be studied and analyzed in order to understand the underlying pathogenesis and to improve the management of the disease.
White band disease causes the affected coral tissue to decorticate off the skeleton in a white uniform band for which the disease was given its name. The band, which can range from a few millimeters to 10 centimeters wide, typically works its way from the base of the coral colony up to the coral branch tips. The band progresses up the coral branch at an approximate rate of 5 millimeters per day, causing tissue loss as it works its way to the branch tips. After the tissue is lost, the bare skeleton of the coral may later by colonized by filamentous algae.
There are two variants of white band disease, type I and type II. In Type I of white band disease, the tissue remaining on the coral branch shows no sign of coral bleaching, although the affected colony may appear lighter in color overall. However, a variant of white band disease, known simply as white band disease Type II, which was found on Staghorn colonies near the Bahamas, does produce a margin of bleached tissue before it is lost. Type II of white band disease can be mistaken for coral bleaching. By examining the remaining living coral tissue for bleaching, one can delineate which type of the disease affects a given coral.
Marek's disease is a highly contagious viral neoplastic disease in chickens. It is named after József Marek, a Hungarian veterinarian. Marek's disease is caused by an alphaherpesvirus known as 'Marek's disease virus' (MDV) or "Gallid alphaherpesvirus 2" (GaHV-2). The disease is characterized by the presence of T cell lymphoma as well as infiltration of nerves and organs by lymphocytes. Viruses "related" to MDV appear to be benign and can be used as vaccine strains to prevent Marek's disease. For example, the related Herpesvirus of Turkeys (HVT), causes no apparent disease in turkeys and continues to be used as a vaccine strain for prevention of Marek's disease (see below). Birds infected with GaHV-2 can be carriers and shedders of the virus for life. Newborn chicks are protected by maternal antibodies for a few weeks. After infection, microscopic lesions are present after one to two weeks, and gross lesions are present after three to four weeks. The virus is spread in dander from feather follicles and transmitted by inhalation.
The twins require the use of wheelchairs for mobility and are unable to speak without the assistance of electronic speaking aids. They experience persistent and painful muscle spasms which are worsened by emotional distress. They are currently living with their parents, with the assistance of hospice workers. Doctors continue to administer tests to the twins in search of a treatment.
With Behçet's disease as an intercurrent disease in pregnancy, the pregnancy does not have an adverse effect on the course of Behçet's disease and may possibly ameliorate its course. Still, there is a substantial variability in clinical course between patients and even for different pregnancies in the same patient. Also, the other way around, Behçet's disease confers an increased risk of pregnancy complications, miscarriage and Cesarean section.
Behçet's can cause male infertility, either as a result of the condition itself or of a side effect of concomitant medication such as Colchicine, which is known to lower sperm count.
The disease appears to be progressive in nature. The Fields twins started having problems when they were four years old. By the time they had reached the age of nine, they were having difficulty walking and needed frames to assist them with walking. Their muscles have been gradually deteriorating over time. The disease affects the twins' nerves, causing them to make involuntary muscle movements such as trembling in the hands.
The extent of the disease is still unknown as the two women are only 21. However, the disease has had no apparent effect on their brains or personalities. Doctors do not know if the disease is fatal and, if so, what the life expectancy of one with this disease is. If the cause of the disease is genetic, there is a chance that the twins could pass it on to their future children.
Pacheco's disease is an acute and often lethal infectious disease in psittacine birds. The disease is caused by a group of herpesviruses, "Psittacid herpesvirus 1" (PsHV-1), which consists of four genotypes. Birds which do not succumb to Pacheco's disease after infection with the virus become asymptomatic carriers that act as reservoirs of the infection. These persistently infected birds, often Macaws, Amazon parrots and some species of conures, shed the virus in feces and in respiratory and oral secretions. Outbreaks can occur when stress causes healthy birds who carry the virus to shed it. Birds generally become infected after ingesting the virus in contaminated material, and show signs of the disease within several weeks.
The main sign of Pacheco's disease is sudden death, sometimes preceded by a short, severe illness. If a bird survives Pacheco's disease following infection with PsHV-1 genotypes 1, 2 or 3, it may later develop internal papilloma disease in the gastrointestinal tract.
Susceptible parrot species include the African gray parrot, and cockatoo. Native Australian birds, such as the eclectus parrot, Bourke's parrot, and budgerigar are susceptible to Pacheco's disease, although the disease itself has not been found in Australia.
Vaccination is the only known method to prevent the development of tumors when chickens are infected with the virus. However, administration of vaccines does not prevent transmission of the virus, i.e., the vaccine is not sterilizing. However, it does reduce the amount of virus shed in the dander, hence reduces horizontal spread of the disease. Marek's disease does not spread vertically. The vaccine was introduced in 1970 and the scientist credited with its development is Dr. Ben Roy Burmester and Dr. Frank J Siccardi. Before that, Marek's disease caused substantial revenue loss in the poultry industries of the United States and the United Kingdom. The vaccine can be administered to one-day-old chicks through subcutaneous inoculation or by "in ovo" vaccination when the eggs are transferred from the incubator to the hatcher. "In ovo" vaccination is the preferred method, as it does not require handling of the chicks and can be done rapidly by automated methods. Immunity develops within two weeks.
The vaccine originally contained the antigenically similar turkey herpesvirus, which is serotype 3 of MDV. However, because vaccination does not prevent infection with the virus, the Marek's disease virus has evolved increased virulence and resistance to this vaccine. As a result, current vaccines use a combination of vaccines consisting of HVT and gallid herpesvirus type 3 or an attenuated MDV strain, CVI988-Rispens (ATCvet code: ).
There are no currently known causes of this disease. There are studies currently proposing several theories of the causes which include inflammation of the adipose tissue, nervous system malfunction and endocrine malfunction. None of the theories that are currently proposed have been found viable. Since little is known about Dercum's disease, there are currently no known modes of prevention. Some hypotheses state that maintaining a healthy weight and diet can help prevent Dercum's although it has not been proven.
Dercum's disease can affect people of any gender and of any age. The majority of cases are linked to women between the ages of 45 and 60, who are overweight and postmenopausal. Due to the difficulty of diagnosis of this disease, many cases are underreported or misdiagnosed and it is difficult to understand what part of the population is affected by it the most.
Life expectancy with Fabry disease for males was 58.2 years, compared with 74.7 years in the general population, and for females 75.4 years compared with 80.0 years in the general population, according to registry data from 2001 to 2008. The most common cause of death was cardiovascular disease, and most of those had received kidney replacements.
This disease is more common in women and an association with the gene FLT4 has been described. FLT4 codes for VEGFR-3, which is implicated in development of the lymphatic system.
Milroy's disease is also known as primary or hereditary lymphedema type 1A or early onset lymphedema.
It is a very rare disease with only about 200 cases reported in the medical literature. Milroy's disease is an autosomal dominant condition caused by a mutation in the FLT4 gene which encodes of the vascular endothelial growth factor receptor 3 (VEGFR-3) gene located on the long arm (q) on chromosome 5 (5q35.3).
In contrast to Milroy's disease (early onset lymphedema type 1A,) which typically has its onset of swelling and edema at birth or during early infancy, hereditary lymphedema type II, known as Meige disease, has its onset around the time of puberty. Meige disease is also an autosomal dominant disease. It has been linked to a mutations in the ‘forkhead’ family transcription factor (FOXC2) gene located on the long arm of chromosome 16 (16q24.3). About 2000 cases have been identified. A third type of hereditary lymphedema, that has an onset after the age of 35 is known as lymph-edema tarda.