Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
           
        
Lujan–Fryns syndrome is a rare X-linked dominant syndrome, and is therefore more common in males than females. Its prevalence within the general population has not yet been determined.
Exposure of spermatozoa to lifestyle, environmental and/or occupational hazards may increase the risk of aneuploidy. Cigarette smoke is a known aneugen (aneuploidy inducing agent). It is associated with increases in aneuploidy ranging from 1.5 to 3.0-fold. Other studies indicate factors such as alcohol consumption, occupational exposure to benzene, and exposure to the insecticides fenvalerate and carbaryl also increase aneuploidy.
Human trisomies compatible with live birth, other than Down syndrome (trisomy 21), are Edwards syndrome (trisomy 18) and Patau syndrome (trisomy 13). Complete trisomies of other chromosomes are usually not viable and represent a relatively frequent cause of miscarriage. Only in rare cases of a mosaicism, the presence of a normal cell line, in addition to the trisomic cell line, may support the development of a viable trisomy of the other chromosomes.
Microdeletions in the Y chromosome have been found at a much higher rate in infertile men than in fertile controls and the correlation found may still go up as improved genetic testing techniques for the Y chromosome are developed.
Much study has been focused upon the "azoospermia factor locus" (AZF), at Yq11. A specific partial deletion of AZFc called "gr/gr deletion" is significantly associated with male infertility among Caucasians in Europe and the Western Pacific region.
Additional genes associated with spermatogenesis in men and reduced fertility upon Y chromosome deletions include RBM, DAZ, SPGY, and TSPY.
Currently, research is focusing on identifying the role of the genes on 18p in causing the signs and symptoms associated with deletions of 18p. This will ultimately enable predictive genotyping.
TGIF-Mutations and deletions of this gene have been associated with holoprosencephaly. Penetrance is incomplete, meaning that a deletion of one copy of this gene is not in and of itself sufficient to cause holoprosencephaly. Ten to fifteen percent of people with 18p- have holoprosencephaly, suggesting that other genetic and environmental facts play a role in the etiology of holoprosencephaly in these individuals.
As its name indicates, a person with the syndrome has one Y chromosome and four X chromosomes on the 23rd pair, thus having 49 chromosomes rather than the normal 46. As with most categories of aneuploidy disorders, 49,XXXXY syndrome is often accompanied by intellectual disability. It can be considered a form of 47, XXY Klinefelter syndrome, or a variant of it.
It is genetic but not hereditary. This means that while the genes of the parents cause the syndrome, there is a small chance of more than one child having the syndrome. The probability of inheriting the disease is about 1%.
The individuals with this syndrome are males, but 49, XXXXX also exists with similar characteristics.
About half of all 'marker' chromosomes are idic(15) but idic(15) in itself is one of the rare chromosome abnormalities. Incidence at birth appears to be 1 in 30,000 with a sex ratio of almost 1:1; however, since dysmorphic features are absent or subtle and major malformations are rare, chromosome analysis may not be thought to be indicated, and some individuals, particularly in the older age groups, probably remain undiagnosed. There are organizations for families with idic(15) children that offer extensive information and support.
22q11.2 deletion syndrome was estimated to affect between one in 2000 and one in 4000 live births. This estimate is based on major birth defects and may be an underestimate, because some individuals with the deletion have few symptoms and may not have been formally diagnosed. It is one of the most common causes of mental retardation due to a genetic deletion syndrome.
The prevalence of 22q11.2DS has been expected to rise because of multiple reasons: (1) Thanks to surgical and medical advances, an increasing number of people are surviving heart defects associated with the syndrome. These individuals are in turn having children. The chances of a 22q11.2DS patient having an affected child is 50% for each pregnancy; (2) Parents who have affected children, but who were unaware of their own genetic conditions, are now being diagnosed as genetic testing become available; (3) Molecular genetics techniques such as FISH (fluorescence in situ hybridization) have limitations and have not been able to detect all 22q11.2 deletions. Newer technologies have been able to detect these atypical deletions.
Recently, the syndrome has been estimated to affect up to one in 2000 live births. Testing for 22q11.2DS in over 9500 pregnancies revealed a prevalence rate of 1/992.
The Chromosome 18 Registry & Research Society
The Chromosome 18 Registry & Research Society in Europe
Chromosome 18 Clinical Research Center, University of Texas Health Science Center at San Antonio
Unique
Chromosome Disorder Outreach
The mechanism of mutation is not different for Y-chromosome microdeletion. However, the ability to repair it differs from other chromosomes. The human Y chromosome is passed directly from father to son, and is not protected against accumulating copying errors, whereas other chromosomes are error corrected by recombining genetic information from mother and father. This may leave natural selection as the primary repair mechanism for the Y chromosome.
More than 80% of children with Patau syndrome die within the first year of life. Children with the mosaic variation are usually affected to a lesser extent. In a retrospective Canadian study of 174 children with trisomy 13, median survival time was 12.5 days. One and ten year survival was 19.8% and 12.9% respectively.
As the syndrome is due to a chromosomal non-disjunction event, the recurrence risk is not high compared to the general population. There has been no evidence found that indicates non-disjunction occurs more often in a particular family.
An individual exhibiting intellectual disability and other symptoms similar to LFS was found to have a terminal deletion of the subtelomeric region in the short arm of chromosome 5. Deletion of this area of chromosome 5 is associated with intellectual disability, psychotic behavior, autism, macrocephaly and hypernasal-like speech, as well as the disorder Cri du chat syndrome. Fryns (2006) suggests a detailed examination of chromosome 5 with FISH should be performed as part of the differential diagnosis of LFS.
Mutations in the "UPF3B" gene, also found on the X chromosome, are another cause of X-linked intellectual disability. "UPF3B" is part of the nonsense-mediated mRNA decay (NMD) complex, which performs mRNA surveillance, detecting mRNA sequences that have been erroneously truncated (shortened) by the presence of nonsense mutations. Mutations in "UPF3B" alter and prevent normal function of the NMD pathway, resulting in translation and expression of truncated mRNA sequences into malfunctioning proteins that can be associated with developmental errors and intellectual disability. Individuals from two families diagnosed with LFS and one family with FGS were found to have mutations in "UPF3B", confirming that the clinical presentations of the different mutations can overlap.
Edwards syndrome occurs in about one in 5,000 live births, but more conceptions are affected by the syndrome because the majority of those diagnosed with the condition prenatally will not survive to birth. Although women in their 20s and early 30s may conceive babies with Edwards syndrome, the risk of conceiving a child with it increases with a woman's age. The average maternal age for conceiving a child with this disorder is 32½.
49,XXXXY syndrome is an extremely rare aneuploidic sex chromosomal abnormality. It occurs in approximately 1 out of 85,000 to 100,000 males.
Currently, research is focusing on identifying the role of the genes on 18p and 18q in causing the signs and symptoms associated with deletions of 18p and/or 18q. This will ultimately enable predictive genotyping.Thus far, several genes on chromosome 18 have been linked with a phenotypic effect.
TGIF - Mutations and deletions of this gene, which is located on18p, have been associated with holoprosencephaly. Penetrance is incomplete, meaning that a deletion of one copy of this gene is not in and of itself sufficient to cause holoprosencephaly. Ten to fifteen percent of people with 18p- have holoprosencephaly, suggesting that other genetic and environmental facts play a role in the etiology of holoprosencephaly in these individuals.
TCF4 – In 2007, deletions of or point mutations in this gene, which is located on 18q, were identified as the cause of Pitt-Hopkins disease. This is the first gene that has been definitively shown to directly cause a clinical phenotype when deleted. If a deletion includes the TCF4 gene (located at 52,889,562-52,946,887), features of Pitt-Hopkins may be present, including abnormal corpus callosum; short neck; small penis; accessory and wide-spaced nipples; broad or clubbed fingers; and sacral dimple. Those with deletions inclusive of TCF4 have a significantly more severe cognitive phenotype.
TSHZ1 - Point mutations and deletions of this gene, located on 18q, are linked with congenital aural atresia Individuals with deletions inclusive of this gene have a 78% chance of having aural atresia.
"Critical regions" – Recent research has narrowed the critical regions for four features of the distal 18q- phenotype down to a small segment of distal 18q, although the precise genes responsible for those features remain to be identified.
"Haplolethal Regions" - There are two regions on chromosome 18 that has never been found to be deleted. They are located between the centromere and 22,826,284 bp (18q11.2) and between 43,832,732 and 45,297,446 bp (18q21.1). It is hypothesized that there are genes in these regions that are lethal when deleted.
In a newborn boy thought to have Fryns syndrome, Clark and Fenner-Gonzales (1989) found mosaicism for a tandem duplication of 1q24-q31.2. They suggested that the gene for this disorder is located in that region. However, de Jong et al. (1989), Krassikoff and Sekhon (1990), and Dean et al. (1991) found possible Fryns syndrome associated with anomalies of chromosome 15, chromosome 6, chromosome 8(human)and chromosome 22, respectively. Thus, these cases may all represent mimics of the mendelian syndrome and have no significance as to the location of the gene for the recessive disorder.
By array CGH, Slavotinek et al. (2005) screened patients with DIH and additional phenotypic anomalies consistent with Fryns syndrome for cryptic chromosomal aberrations. They identified submicroscopic chromosome deletions in 3 probands who had previously been diagnosed with Fryns syndrome and had normal karyotyping with G-banded chromosome analysis. Two female infants were found to have microdeletions involving 15q26.2 (see 142340), and 1 male infant had a deletion in band 8p23.1 (see 222400).
Patau syndrome is a syndrome caused by a chromosomal abnormality, in which some or all of the cells of the body contain extra genetic material from chromosome 13. The extra genetic material disrupts normal development, causing multiple and complex organ defects.
This can occur either because each cell contains a full extra copy of chromosome 13 (a disorder known as trisomy 13 or trisomy D), or because each cell contains an extra partial copy of the chromosome (i.e., Robertsonian translocation) or because of mosaic Patau syndrome. Full trisomy 13 is caused by nondisjunction of chromosomes during meiosis (the mosaic form is caused by nondisjunction during mitosis).
Like all nondisjunction conditions (such as Down syndrome and Edwards syndrome), the risk of this syndrome in the offspring increases with maternal age at pregnancy, with about 31 years being the average. Patau syndrome affects somewhere between 1 in 10,000 and 1 in 21,700 live births.
Ring 18 is a genetic condition caused by a deletion of the two tips of chromosome 18 followed by the formation of a ring-shaped chromosome. It was first reported in 1964.
Patients have an essentially normal life expectancy but require regular medical follow-up.
This syndrome, evenly spread in all ethnic groups, has a prevalence of 1-2 subjects per every 1000 males in the general population. 3.1% of infertile males have Klinefelter syndrome. The syndrome is also the main cause of male hypogonadism.
According to 2008 meta-analysis, the prevalence of the syndrome has increased over the past decades; however, this does not appear to be related to increased age of the mother at conception, as no increase was observed in the rates of other trisomies of sex chromosomes (XXX and XYY). The National Institutes of Health; however, state that older mothers might have a slightly increased risk.
The diagnosis of PPS has been made in several ethnic groups, including Caucasian, Japanese, and sub-Saharan African. Males and females are equally likely to suffer from the syndrome. Since the disorder is very rare, its incidence rate is difficult to estimate, but is less than 1 in 10,000.
Trisomy 22 is a chromosomal disorder in which there are three copies of chromosome 22 rather than two. It is a frequent cause of spontaneous abortion during the first trimester of pregnancy. Progression to the second trimester and live birth are rare. This disorder is found in individuals with an extra copy or a variation of chromosome 22 in some or all cells of their body. There are many kinds of disorders associated with Trisomy 22:
Emanuel Syndrome is named after the genetic contributions made by researcher Dr. Beverly Emanuel. This condition is assigned to individuals born with an unbalanced 11/22 translocation. That is, a fragment of chromosome 11 is moved, or translocated, to chromosome 22.
22q11 Deletion Syndrome is a rare condition which occurs in approximately 1 in 4000 births. This condition is identified when a band in the q11.2 section of the arm of chromosome 22 is missing or deleted. This condition has several different names: 22q11.2 Deletion Syndrome, Velocardiofacial syndrome, DiGeorge Syndrome, Conotruncal Anomaly Face syndrome, Opitz G/BBB Syndrome, and Cayler Cardiofacial Syndrome. The effects of this disorder are different in each individual but similarities exist such as heart defects, immune system problems, a distinctive facial appearance, learning challenges, cleft palate, hearing loss, kidney problems, hypocalcemia, and sometimes psychiatric issues.
22q11 microduplication syndrome is the opposite of the 22q11 deletion syndrome: in this condition, a band of q.11.2 section of chromosome 22 is duplicated. Individuals carrying this deficiency are relatively “normal” as in they don’t possess any major birth defects or major medical illnesses. This microduplication is more common than the deletion; this might be due to the milder phenotype of the individuals.
Phelan-McDermid Syndrome / 22q13 Deletion Syndrome is a condition caused by the deletion of the tip of the q arm on chromosome 22. Most individuals with this disorder experience cognitive delays; low muscle tone; and sleeping, eating, and behavioural issues.
Chromosome Ring 22 is a rare disorder caused by the break and re-join of both ends of chromosome 22, forming a ring. The effects on the individual with this disorder are dependent on the amount of genetic information lost during the break/re-join. Major characteristics for this disorder are intellectual disability, muscle weakness and lack of coordination.
Cat Eye Syndrome / Schmid Fraccaro Syndrome is a condition caused by a partial trisomy or tetrasomy in chromosome 22. A small extra chromosome is found, made up of the top half of chromosome 22 and a portion of the q arm at the q11.2 break. This chromosome can be found three or four times. This syndrome is referred as “Cat Eye” due to the eye appearance of reported affected individuals who have coloboma of the iris; however, this feature is only seen in about half of the cases.
Mosaic trisomy 22 is a disorder in which an extra chromosome 22 is found only in some cells of the body. The severity of each case is determined by the number of cells with this extra copy. Some characteristics of individuals with this condition are cardiac abnormalities, growth retardation, mental delay, etc.
Complete Trisomy 22 is in contrast with Mosaic trisomy 22; this disorder is characterized by an extra copy of chromosome 22 which is found in each cell of the body of the affected individual. These cases are very rare, and most of the affected individuals die before birth or shortly after.
Genetic disorders may also be complex, multifactorial, or polygenic, meaning they are likely associated with the effects of multiple genes in combination with lifestyles and environmental factors. Multifactorial disorders include heart disease and diabetes. Although complex disorders often cluster in families, they do not have a clear-cut pattern of inheritance. This makes it difficult to determine a person’s risk of inheriting or passing on these disorders. Complex disorders are also difficult to study and treat, because the specific factors that cause most of these disorders have not yet been identified. Studies which aim to identify the cause of complex disorders can use several methodological approaches to determine genotype-phenotype associations. One method, the genotype-first approach, starts by identifying genetic variants within patients and then determining the associated clinical manifestations. This is opposed to the more traditional phenotype-first approach, and may identify causal factors that have previously been obscured by clinical heterogeneity, penetrance, and expressivity.
On a pedigree, polygenic diseases do tend to "run in families", but the inheritance does not fit simple patterns as with Mendelian diseases. But this does not mean that the genes cannot eventually be located and studied. There is also a strong environmental component to many of them (e.g., blood pressure).
- asthma
- autoimmune diseases such as multiple sclerosis
- cancers
- ciliopathies
- cleft palate
- diabetes
- heart disease
- hypertension
- inflammatory bowel disease
- intellectual disability
- mood disorder
- obesity
- refractive error
- infertility
The condition 48,XXYY is not inherited; it usually occurs as a random event during the formation of reproductive cells (eggs and sperm). An error in cell division called nondisjunction results in a reproductive cell with an abnormal number of chromosomes. In 48,XXYY syndrome, the extra sex chromosomes almost always come from a sperm cell. Nondisjunction may cause a sperm cell to gain two extra sex chromosomes, resulting in a sperm cell with three sex chromosomes (one X and two Y chromosomes). If that sperm cell fertilizes a normal egg cell with one X chromosome, the resulting child will have two X chromosomes and two Y chromosomes in each of the body's cells.
In a small percentage of cases, 48,XXYY syndrome results from nondisjunction of the sex chromosomes in a 46,XY embryo very soon after fertilization has occurred. This means that an normal sperm cell with one Y chromosome fertilized a normal egg cell with one X chromosome, but right after fertilization nondisjunction of the sex chromosomes caused the embryo to gain two extra sex chromosomes, resulting in a 48,XXYY embryo.