Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Genetic disorders may also be complex, multifactorial, or polygenic, meaning they are likely associated with the effects of multiple genes in combination with lifestyles and environmental factors. Multifactorial disorders include heart disease and diabetes. Although complex disorders often cluster in families, they do not have a clear-cut pattern of inheritance. This makes it difficult to determine a person’s risk of inheriting or passing on these disorders. Complex disorders are also difficult to study and treat, because the specific factors that cause most of these disorders have not yet been identified. Studies which aim to identify the cause of complex disorders can use several methodological approaches to determine genotype-phenotype associations. One method, the genotype-first approach, starts by identifying genetic variants within patients and then determining the associated clinical manifestations. This is opposed to the more traditional phenotype-first approach, and may identify causal factors that have previously been obscured by clinical heterogeneity, penetrance, and expressivity.
On a pedigree, polygenic diseases do tend to "run in families", but the inheritance does not fit simple patterns as with Mendelian diseases. But this does not mean that the genes cannot eventually be located and studied. There is also a strong environmental component to many of them (e.g., blood pressure).
- asthma
- autoimmune diseases such as multiple sclerosis
- cancers
- ciliopathies
- cleft palate
- diabetes
- heart disease
- hypertension
- inflammatory bowel disease
- intellectual disability
- mood disorder
- obesity
- refractive error
- infertility
A genetic disorder is a genetic problem caused by one or more abnormalities in the genome, especially a condition that is present from birth (congenital). Most genetic disorders are quite rare and affect one person in every several thousands or millions.
Genetic disorders may be hereditary, passed down from the parents' genes. In other genetic disorders, defects may be caused by new mutations or changes to the DNA. In such cases, the defect will only be passed down if it occurs in the germ line. The same disease, such as some forms of cancer, may be caused by an inherited genetic condition in some people, by new mutations in other people, and mainly by environmental causes in other people. Whether, when and to what extent a person with the genetic defect or abnormality will actually suffer from the disease is almost always affected by the environmental factors and events in the person's development.
Some types of recessive gene disorders confer an advantage in certain environments when only one copy of the gene is present.
X-linked recessive inheritance is a mode of inheritance in which a mutation in a gene on the X chromosome causes the phenotype to be expressed in males (who are necessarily hemizygous for the gene mutation because they have one X and one Y chromosome) and in females who are homozygous for the gene mutation, see zygosity.
X-linked inheritance means that the gene causing the trait or the disorder is located on the X chromosome. Females have two X chromosomes, while males have one X and one Y chromosome. Carrier females who have only one copy of the mutation do not usually express the phenotype, although differences in X chromosome inactivation can lead to varying degrees of clinical expression in carrier females since some cells will express one X allele and some will express the other. The current estimate of sequenced X-linked genes is 499 and the total including vaguely defined traits is 983.
Some scholars have suggested discontinuing the terms dominant and recessive when referring to X-linked inheritance due to the multiple mechanisms that can result in the expression of X-linked traits in females, which include cell autonomous expression, skewed X-inactivation, clonal expansion, and somatic mosaicism.
The most common X-linked recessive disorders are:
- Red-green color blindness, a very common trait in humans and frequently used to explain X-linked disorders. Between seven and ten percent of men and 0.49% to 1% of women are affected. Its commonness may be explained by its relatively benign nature. It is also known as daltonism.
- Hemophilia A, a blood clotting disorder caused by a mutation of the Factor VIII gene and leading to a deficiency of Factor VIII. It was once thought to be the "royal disease" found in the descendants of Queen Victoria. This is now known to have been Hemophilia B (see below).
- Hemophilia B, also known as Christmas Disease, a blood clotting disorder caused by a mutation of the Factor IX gene and leading to a deficiency of Factor IX. It is rarer than hemophilia A. As noted above, it was common among the descendants of Queen Victoria.
- Duchenne muscular dystrophy, which is associated with mutations in the dystrophin gene. It is characterized by rapid progression of muscle degeneration, eventually leading to loss of skeletal muscle control, respiratory failure, and death.
- Becker's muscular dystrophy, a milder form of Duchenne, which causes slowly progressive muscle weakness of the legs and pelvis.
- X-linked ichthyosis, a form of ichthyosis caused by a hereditary deficiency of the steroid sulfatase (STS) enzyme. It is fairly rare, affecting one in 2,000 to one in 6,000 males.
- X-linked agammaglobulinemia (XLA), which affects the body's ability to fight infection. XLA patients do not generate mature B cells. B cells are part of the immune system and normally manufacture antibodies (also called immunoglobulins) which defends the body from infections (the humoral response). Patients with untreated XLA are prone to develop serious and even fatal infections.
- Glucose-6-phosphate dehydrogenase deficiency, which causes nonimmune hemolytic anemia in response to a number of causes, most commonly infection or exposure to certain medications, chemicals, or foods. Commonly known as "favism", as it can be triggered by chemicals existing naturally in broad (or fava) beans.
Currently, no research has shown a higher prevalence of most leukodsytrophy types in any one place around the world. There is, however, a higher prevalence of the Canavan disease in the Jewish population for unknown reasons. 1 in 40 individuals of Ashkenazi Jewish descent are carriers of Canavan disease. This estimates to roughly 2.5%. Additionally, due to an autosomal recessive inheritance patterns, there is no significant difference found between affected males and affected females for most types of leukodystrophy including, but not limited to, metachromatic leukodystrophy, Krabbe disease, Canavan disease, and Alexander disease. The one exception to this is any type of leukodystrophy carried on a sex chromosome, such as X-linked adrenoleukodystrophy, which is carried on the X-chromosome. Because of the inheritance pattern of X-linked diseases, males are more often affected by this type of leukodystrophy, although female carriers are often symptomatic, though not as severely so as males. To date, there have been no found cases of a leukodystrophy carried on the Y chromosome.
X-linked myotubular myopathy (MTM) is a form of centronuclear myopathy (CNM) associated with myotubularin 1.
Genetically inherited traits and conditions are often referred to based upon whether they are located on the "sex chromosomes" (the X or Y chromosomes) versus whether they are located on "autosomal" chromosomes (chromosomes other than the X or Y). Thus, genetically inherited conditions are categorized as being sex-linked (e.g., X-linked) or autosomal. Females have two X-chromosomes, while males only have a single X chromosome, and a genetic abnormality located on the X chromosome is much more likely to cause clinical disease in a male (who lacks the possibility of having the normal gene present on any other chromosome) than in a female (who is able to compensate for the one abnormal X chromosome).
The X-linked form of MTM is the most commonly diagnosed type. Almost all cases of X-linked MTM occurs in males. Females can be "carriers" for an X-linked genetic abnormality, but usually they will not be clinically affected themselves. Two exceptions for a female with a X-linked recessive abnormality to have clinical symptoms: one is a manifesting carrier and the other is X-inactivation. A manifesting carrier usually has no noticeable problems at birth; symptoms show up later in life. In X-inactivation, the female (who would otherwise be a carrier, without any symptoms), actually presents with full-blown X-linked MTM. Thus, she congenitally presents (is born with) MTM.
Thus, although" MTM1" mutations most commonly cause problems in boys, these mutations can also cause clinical myopathy in girls, for the reasons noted above. Girls with myopathy and a muscle biopsy showing a centronuclear pattern should be tested for "MTM1" mutations.
Many clinicians and researchers use the abbreviations XL-MTM, XLMTM or X-MTM to emphasize that the genetic abnormality for myotubular myopathy (MTM) is X-linked (XL), having been identified as occurring on the X chromosome. The specific gene on the X chromosome is referred to as MTM-1. In theory, some cases of CNM may be caused by an abnormality on the X chromosome, but located at a different site from the gene "MTM1", but currently "MTM1" is the only X-linked genetic mutation site identified for myotubular or centronuclear myopathy. Clinical suspicion for X-linked inheritance would be a disease affecting multiple boys (but no girls) and a pedigree chart showing inheritance only through the maternal (mother’s) side of each generation.
Chondrodysplasia punctata is a clinically and genetically diverse group of rare diseases, first described by Erich Conradi (1882–1968), that share the features of stippled epiphyses and skeletal changes.
Types include:
- Rhizomelic chondrodysplasia punctata , ,
- X-linked recessive chondrodysplasia punctata
- Conradi-Hünermann syndrome
- Autosomal dominant chondrodysplasia punctata
Specific types of leukodystrophies include the following with their respective ICD-10 codes when available:
- (E71.3) Adrenomyeloneuropathy
- (E75.2) Alexander disease
- (E75.5) Cerebrotendineous xanthomatosis
- Hereditary CNS demyelinating disease
- (E75.2) Krabbe disease
- (E75.2) Metachromatic leukodystrophy
- (E75.2) Pelizaeus–Merzbacher disease
- (E75.2) Canavan disease
- (G93.49) Leukoencephalopathy with vanishing white matter
- (E71.3) Adrenoleukodystrophy
- (G60.1) Refsum disease
Most cases are caused by mutations in the EDA gene, which are inherited in an X-linked recessive pattern, called x-linked hypohidrotic ectodermal dysplasia (XLHED). A condition is considered X-linked if the mutated gene that causes the disorder is located on the X chromosome, one of the two sex chromosomes. In males (who have only one X chromosome), one altered copy of the gene in each cell is sufficient to cause the condition. In females (who have two X chromosomes), a mutation must be present in both copies of the gene to cause the disorder. Males are affected by X-linked recessive disorders much more frequently than females. A striking characteristic of X-linked inheritance is that fathers cannot pass X-linked traits to their sons.
In X-linked recessive inheritance, a female with one altered copy of the gene in each cell is called a carrier. Since females operate on only one of their two X chromosomes (X inactivation) a female carrier may or may not manifest symptoms of the disease. If a female carrier is operating on her normal X she will not show symptoms. If a female is operating on her carrier X she will show symptoms.In about 70 percent of cases, carriers of hypohidrotic ectodermal dysplasia experience some features of the condition. These signs and symptoms are usually mild and include a few missing or abnormal teeth, sparse hair, and some problems with sweat gland function. Some carriers, however, have more severe features of this disorder.
Other than managing symptoms, there is currently no treatment for XLHED. However, in December 2012 Edimer Pharmaceuticals a biotechnology company based in Cambridge, MA USA, initiated a Phase I, open-label, safety and pharmacokinetic clinical study of EDI200, a drug aimed at the treatment of XLHED. During development in mice and dogs EDI200 has been shown to substitute for the altered or missing protein resulting from the EDA mutation, which causes XLHED. The initiation of a clinical study of EDI200 in neonates started in October 2013 with the first neonate tested.
X-linked recessive hypoparathyroidism is a rare, congenital form of hypoparathyroidism.
Gordon syndrome (GS), or distal arthrogryposis type 3, is a rare, autosomal dominant disorder characterized by cleft palate and congenital contractures of the hands and feet.
Hypohidrotic ectodermal dysplasia (also known as "anhidrotic ectodermal dysplasia", and "Christ-Siemens-Touraine syndrome") is one of about 150 types of ectodermal dysplasia in humans. Before birth, these disorders result in the abnormal development of structures including the skin, hair, nails, teeth, and sweat glands.
Opitz G/BBB Syndrome is a rare genetic condition caused by one of two major types of mutations: MID1 mutation on the short (p) arm of the X chromosome or a mutation of the 22q11.2 gene on the 22nd chromosome. Since it is a genetic disease, it is an inherited condition. However, there is an extremely wide variability in how the disease presents itself.
In terms of prevention, several researchers strongly suggest prenatal testing for at-risk pregnancies if a MID1 mutation has been identified in a family member. Doctors can perform a fetal sex test through chromosome analysis and then screen the DNA for any mutations causing the disease. Knowing that a child may be born with Opitz G/BBB syndrome could help physicians prepare for the child’s needs and the family prepare emotionally. Furthermore, genetic counseling for young adults that are affected, are carriers or are at risk of carrying is strongly suggested, as well (Meroni, Opitz G/BBB syndrome, 2012). Current research suggests that the cause is genetic and no known environmental risk factors have been documented. The only education for prevention suggested is genetic testing for at-risk young adults when a mutation is found or suspected in a family member.
Melnick–Needles syndrome (MNS), also known as Melnick–Needles osteodysplasty, is an extremely rare congenital disorder that affects primarily bone development. Patients with Melnick–Needles syndrome have typical faces (exophthalmos, full cheeks, micrognathia and malalignment of teeth), flaring of the metaphyses of long bones, s-like curvature of bones of legs, irregular constrictions in the ribs, and sclerosis of base of skull.
In males, the disorder is nearly always lethal in infancy. Lifespan of female patients might not be affected.
Melnick–Needles syndrome is associated with mutations in the "FLNA" gene and is inherited in an X-linked dominant manner. As with many genetic disorders, there is no known cure to MNS.
The disorder was first described by John C. Melnick and Carl F. Needles in 1966 in two multi-generational families.
Treatment can involve operations to lengthen the leg bones, which involves many visits to the hospital. Other symptoms can be treated with medicine or surgery. Most female patients with the syndrome can live a long and normal life, while males have only survived in rare cases.
While some reports suggest Gordon syndrome may be inherited in an X-linked dominant manner, most agree that it is inherited in an autosomal dominant manner with reduced expressivity and incomplete penetrance in females.
In autosomal dominant inheritance, having only one mutated copy of the disease-causing gene in each cell is sufficient to cause signs and symptoms of the condition. When an individual with an autosomal dominant condition has children, each child has a 50% (1 in 2) risk to inherit the mutated copy of the gene.
If a condition shows variable or reduced expressivity, it means that there can be a range in the nature and severity of signs and symptoms among affected individuals. Incomplete penetrance means that a portion of the individuals who carry the mutated copy of the disease-causing gene will not have any features of the condition.
Early journal reports of boomerang dysplasia suggested X-linked recessive inheritance, based on observation and family history. It was later discovered, however, that the disorder is actually caused by a genetic mutation fitting an autosomal dominant genetic profile.
Autosomal dominant inheritance indicates that the defective gene responsible for a disorder is located on an autosome, and only one copy of the gene is sufficient to cause the disorder, when inherited from a parent who has the disorder.
Boomerang dysplasia, although an autosomal dominant disorder, is "not" inherited because those afflicted do not live beyond infancy. They cannot pass the gene to the next generation.
This disease is named for its inheritance, which occurs in an x-linked recessive pattern.
Conradi–Hünermann syndrome is a form of chondrodysplasia punctata, a group of rare genetic disorders of skeletal development involving abnormal accumulations of calcium salts within the growing ends of long bones. Conradi–Hünermann syndrome is commonly associated with mild to moderate growth deficiency, disproportionate shortening of long bones, particularly those of the upper arms and the thigh bones, short stature, and/or curvature of the spine. In rare cases, intellectual disability may also be present. While evidence suggests that Conradi–Hünermann syndrome predominantly occurs in females and is usually inherited as an X-linked dominant trait, rare cases in which males were affected have also been reported.
The genetics of Conradi–Hünermann syndrome has perplexed medical geneticists, pediatricians and dermatologists for some time, but a number of perplexing features of the genetics of the syndrome have now been resolved, including the fact that the disease is caused by mutations in a gene, and these mutations are simple substitutions, deletions or insertions and are therefore not "unstable". Scientists are still trying to understand exactly where the mutation occurs so that they can correct it.
Mutations in the "SLC16A2" gene cause Allan–Herndon–Dudley syndrome. The "SLC16A2" gene, also known as "MCT8", provides instructions for making a protein that plays a critical role in the development of the nervous system. This protein transports a particular hormone into nerve cells in the developing brain. This hormone, called triiodothyronine or T3, is produced by the thyroid. T3 appears to be critical for the normal formation and growth of nerve cells, as well as the development of junctions between nerve cells (synapses) where cell-to-cell communication occurs. T3 and other forms of thyroid hormone also help regulate the development of other organs and control the rate of chemical reactions in the body.
Gene mutations alter the structure and function of the SLC16A2 protein. As a result, this protein is unable to transport T3 into nerve cells effectively. A lack of this critical hormone in certain parts of the brain disrupts normal brain development, resulting in intellectual disability and problems with movement. Excess amounts of T3 circulate in the bloodstream. It is unclear if this is a consequence of compensatory hyperdeiodination or if it results from impaired uptake by certain cell types. Increased T3 levels in the blood may be toxic to some organs and contribute to the signs and symptoms of Allan–Herndon–Dudley syndrome.
The overall incidence of myotubular myopathy is 1 in 50,000 male live births. The incidence of other centronuclear myopathies is extremely rare, with there only being nineteen families identified with CNM throughout the world. The symptoms currently range from the majority who only need to walk with aids, from a stick to a walking frame, to total dependence on physical mobility aids such as wheelchairs and stand aids, but this latter variety is so rare that only two cases are known to the CNM "community".
Approximately 80% of males with a diagnosis of myotubular myopathy by muscle biopsy will have a mutation in MTM1 identifiable by genetic sequence analysis.
Many patients with myotubular myopathy die in infancy prior to receiving a formal diagnosis. When possible, muscle biopsy and genetic testing may still be helpful even after a neonatal death, since the diagnostic information can assist with family planning and genetic counseling as well as aiding in the accurate diagnosis of any relatives who might also have the same genetic abnormality.
X-linked spinal muscular atrophy type 2 (SMAX2, XLSMA), also known as arthrogryposis multiplex congenita X-linked type 1 (AMCX1), is a rare neurological disorder involving death of motor neurons in the anterior horn of spinal cord resulting in generalised muscle wasting (atrophy). The disease is caused by a mutation in "UBA1" gene and is passed in a X-linked recessive manner by carrier mothers to affected sons.
Affected babies have general muscle weakness, weak cry and floppy limbs; consequently, the condition is usually apparent at or even before birth. Symptoms resemble the more severe forms of the more common spinal muscular atrophy (SMA); however, SMAX2 is caused by a different genetic defect and only genetic testing can correctly identify the disease.
The disorder is usually fatal in infancy or early childhood due to progressive respiratory failure, although survival into teenage years have been reported. As with many genetic disorders, there is no known cure to SMAX2. Appropriate palliative care may be able to increase quality of life and extend lifespan.
This condition is inherited in an X-linked recessive pattern. A condition is considered X-linked if the mutated gene that causes the disorder is located on the X chromosome, one of the two sex chromosomes. In males (who have only one X chromosome), one altered copy of the gene in each cell is sufficient to cause the condition. In females (who have two X chromosomes), a mutation must be present in both copies of the gene to cause the disorder. Males are affected by X-linked recessive disorders much more frequently than females. A striking characteristic of X-linked inheritance is that fathers cannot pass X-linked traits to their sons.
In X-linked recessive inheritance, a female with one altered copy of the gene in each cell is called a carrier. She can pass on the mutated gene, but usually does not experience signs and symptoms of the disorder. Carriers of "SLC16A2" mutations have normal intelligence and do not experience problems with movement. Some carriers have been diagnosed with thyroid disease, a condition which is relatively common in the general population. It is unclear whether thyroid disease is related to SLC16A2 mutations in these cases.
Nuclear factor-kappa B Essential Modulator (NEMO) deficiency syndrome is a rare type of primary immunodeficiency disease that has a highly variable set of symptoms and prognoses. It mainly affects the skin and immune system but has the potential to affect all parts of the body, including the lungs, urinary tract and gastrointestinal tract. It is a monogenetic disease caused by mutation in the IKBKG gene (IKKγ, also known as the NF-κB essential modulator, or NEMO). NEMO is the modulator protein in the IKK inhibitor complex that, when activated, phosphorylates the inhibitor of the NF-κB transcription factors allowing for the translocation of transcription factors into the nucleus.
The link between IKBKG mutations and NEMO deficiency was identified in 1999. IKBKG is located on the X chromosome and is X-linked therefore this disease predominantly affects males, However females may be genetic carriers of certain types of mutations. Other forms of the syndrome involving NEMO-related pathways can be passed on from parent to child in an autosomal dominant manner – this means that a child only has to inherit the faulty gene from one parent to develop the condition. This autosomal dominant type of NEMO deficiency syndrome can affect both boys and girls.
Children with DOCK8 deficiency do not tend to live long; sepsis is a common cause of death at a young age. CNS and vascular complications are other common causes of death.