Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Risk factors independently associated with developing a clinical infection with WNV include a suppressed immune system and a patient history of organ transplantation. For neuroinvasive disease the additional risk factors include older age (>50+), male sex, hypertension, and diabetes mellitus.
A genetic factor also appears to increase susceptibility to West Nile disease. A mutation of the gene "CCR5" gives some protection against HIV but leads to more serious complications of WNV infection. Carriers of two mutated copies of "CCR5" made up 4.0 to 4.5% of a sample of West Nile disease sufferers, while the incidence of the gene in the general population is only 1.0%.
About 15–20% of hospitalized Lassa fever patients will die from the illness. The overall mortality rate is estimated to be 1%, but during epidemics, mortality can climb as high as 50%. The mortality rate is greater than 80% when it occurs in pregnant women during their third trimester; fetal death also occurs in nearly all those cases. Abortion decreases the risk of death to the mother. Some survivors experience lasting effects of the disease, and can include partial or complete deafness.
Because of treatment with ribavirin, fatality rates are continuing to decline.
The mortality rate of chikungunya is slightly less than 1 in 1000. Those over the age of 65, neonates, and those with underlying chronic medical problems are most likely to have severe complications. Neonates are vulnerable as it is possible to vertically transmit chikungunya from mother to infant during delivery, which results in high rates of morbidity, as infants lack fully developed immune systems. The likelihood of prolonged symptoms or chronic joint pain is increased with increased age and prior rheumatological disease.
While the general prognosis is favorable, current studies indicate that West Nile Fever can often be more severe than previously recognized, with studies of various recent outbreaks indicating that it may take as long as 60–90 days to recover. People with milder WNF are just as likely as those with more severe manifestations of neuroinvasive disease to experience multiple long term (>1+ years) somatic complaints such as tremor, and dysfunction in motor skills and executive functions. People with milder illness are just as likely as people with more severe illness to experience adverse outcomes. Recovery is marked by a long convalescence with fatigue. One study found that neuroinvasive WNV infection was associated with an increased risk for subsequent kidney disease.
Because no approved vaccine exists, the most effective means of prevention are protection against contact with the disease-carrying mosquitoes and controlling mosquito populations by limiting their habitat. Mosquito control focuses on eliminating the standing water where mosquitos lay eggs and develop as larva; if elimination of the standing water is not possible, insecticides or biological control agents can be added. Methods of protection against contact with mosquitos include using insect repellents with substances such as DEET, icaridin, PMD (p-menthane-3,8-diol, a substance derived from the lemon eucalyptus tree), or IR3535. However, increasing insecticide resistance presents a challenge to chemical control methods.
Wearing bite-proof long sleeves and trousers also offers protection, and garments can be treated with pyrethroids, a class of insecticides that often has repellent properties. Vaporized pyrethroids (for example in mosquito coils) are also insect repellents. As infected mosquitos often feed and rest inside homes, securing screens on windows and doors will help to keep mosquitoes out of the house. In the case of the day-active "A. aegypti" and "A. albopictus", however, this will have only a limited effect, since many contacts between the mosquitoes and humans occur outdoors.
The number of people infected by Lassa range from 100,000 to three million a year, with up to 5,000 deaths per year in West Africa alone. In certain areas such as Sierra Leone and Liberia, 10-16% of people admitted to hospital have the virus. The case fatality rate for those who are hospitalized for the disease is about 15-20%. Research in Guinea showed a twofold increase risk of infection for those living in close proximity to someone with infection symptoms within the last year.
Lassa has been linked to high risk areas near the western and eastern extremes of West Africa. These areas cannot be well defined by any known biogeographical or environmental breaks. However, it is relatively common in parts of West Africa where the multimammate rat is common, particularly Guinea (Kindia, Faranah and Nzerekore regions), Liberia (mostly in Lofa, Bong, and Nimba counties), Nigeria (everywhere) and Sierra Leone (typically from Kenema and Kailahun districts). It is present but less common in the Central African Republic, Mali, Senegal and other nearby countries, and less common yet in Ghana and the Democratic Republic of the Congo. Benin had its first confirmed cases in 2014, and Togo had its first confirmed cases in 2016.
The spread of Lassa outside of West Africa has been very limited. Twenty to thirty cases have been described in Europe, cited as being caused by importation through infected individuals. These causes found outside of West Africa were found to have a high fatality risk because of the delay of diagnosis and treatment due to being unaware of the risk associated with the symptoms. These imported cases have not manifested in larger epidemics outside of Africa due to a lack of human to human transmission in hospital settings. The exception of this happened in 2003 when a healthcare worker became infected before the patient showed clear symptoms.
The study of the epidemiology of Lassa fever is complicated by a lengthy incubation period, which may be up to three weeks. Incubation periods as long as Lassa fever may affect spatial clustering of the disease by limiting the understanding of the incidence and distribution of the disease. The spatial clustering for this disease is still in development as a lack of easy-available diagnosis, limited public health surveillance infrastructure, and high clustering of incidence near high intensity sampling make for an incomplete look at the impact of Lassa in this region.
Infection with Japanese encephalitis confers lifelong immunity. There are currently three vaccines available: SA14-14-2, IC51 (marketed in Australia and New Zealand as JESPECT and elsewhere as IXIARO) and ChimeriVax-JE (marketed as IMOJEV). All current vaccines are based on the genotype III virus.
A formalin-inactivated mouse-brain derived vaccine was first produced in Japan in the 1930s and was validated for use in Taiwan in the 1960s and in Thailand in the 1980s. The widespread use of vaccine and urbanization has led to control of the disease in Japan, Korea, Taiwan, and Singapore. The high cost of this vaccine, which is grown in live mice, means that poorer countries have not been able to afford to give it as part of a routine immunization program.
The most common adverse effects are redness and pain at the injection site. Uncommonly, an urticarial reaction can develop about four days after injection. Vaccines produced from mouse brain have a risk of autoimmune neurological complications of around 1 per million vaccinations. However where the vaccine is not produced in mouse brains but in vitro using cell culture there is little adverse effects compared to placebo, the main side effects are headache and myalgia.
The neutralizing antibody persists in the circulation for at least two to three years, and perhaps longer. The total duration of protection is unknown, but because there is no firm evidence for protection beyond three years, boosters are recommended every three years for people who remain at risk. Furthermore, there is also no data available regarding the interchangeability of other JE vaccines and IXIARO.
In September 2012 the Indian firm Biological E. Limited has launched an inactivated cell culture derived vaccine based on SA 14-14-2 strain which was developed in a technology transfer agreement with Intercell and is a thiomersal-free vaccine.
A vaccine has been conditionally approved for use in animals in the US. It has been shown that knockout of the NSs and NSm nonstructural proteins of this virus produces an effective vaccine in sheep as well.
Severe disease is more common in babies and young children, and in contrast to many other infections, it is more common in children who are relatively well nourished. Other risk factors for severe disease include female sex, high body mass index, and viral load. While each serotype can cause the full spectrum of disease, virus strain is a risk factor. Infection with one serotype is thought to produce lifelong immunity to that type, but only short-term protection against the other three. The risk of severe disease from secondary infection increases if someone previously exposed to serotype DENV-1 contracts serotype DENV-2 or DENV-3, or if someone previously exposed to DENV-3 acquires DENV-2. Dengue can be life-threatening in people with chronic diseases such as diabetes and asthma.
Polymorphisms (normal variations) in particular genes have been linked with an increased risk of severe dengue complications. Examples include the genes coding for the proteins known as TNFα, mannan-binding lectin, CTLA4, TGFβ, DC-SIGN, PLCE1, and particular forms of human leukocyte antigen from gene variations of HLA-B. A common genetic abnormality, especially in Africans, known as glucose-6-phosphate dehydrogenase deficiency, appears to increase the risk. Polymorphisms in the genes for the vitamin D receptor and FcγR seem to offer protection against severe disease in secondary dengue infection.
The disease can be prevented in horses with the use of vaccinations. These vaccinations are usually given together with vaccinations for other diseases, most commonly WEE, VEE, and tetanus. Most vaccinations for EEE consist of the killed virus. For humans there is no vaccine for EEE so prevention involves reducing the risk of exposure. Using repellent, wearing protective clothing, and reducing the amount of standing water is the best means for prevention
The La Crosse encephalitis virus is a type of arbovirus called a bunyavirus. The Bunyavirales are mainly arboviruses.
Most cases of LAC encephalitis occur in children under 16 years of age. LAC virus is a zoonotic pathogen cycled between the daytime-biting treehole mosquito, "Aedes triseriatus", and vertebrate amplifier hosts (chipmunks, tree squirrels) in deciduous forest habitats. The virus is maintained over the winter by transovarial transmission in mosquito eggs. If the female mosquito is infected, she may lay eggs that carry the virus, and the adults coming from those eggs may be able to transmit the virus to chipmunks and to humans.
Anyone bitten by a mosquito in an area where the virus is circulating can get infected with LACV. The risk is highest for people who live, work or recreate in woodland habitats, because of greater exposure to potentially infected mosquitoes.
People reduce the chance of getting infected with LACV by preventing mosquito bites. There is no vaccine or preventive drug.
Prevention measures against LACV include reducing exposure to mosquito bites. Use repellent such as DEET and picaridin, while spending time outside, especially at during the daytime - from dawn until dusk. "Aedes triseriatus" mosquitoes that transmit (LACV) are most active during the day. Wear long sleeves, pants and socks while outdoors. Ensure all screens are in good condition to prevent mosquitoes from entering your home. "Aedes triseriatus" prefer treeholes to lay eggs in. Also, remove stagnant water such as old tires, birdbaths, flower pots, and barrels.
Mosquito-borne diseases, such as dengue fever and malaria, typically affect third world countries and areas with tropical climates. Mosquito vectors are sensitive to climate changes and tend to follow seasonal patterns. Between years there are often dramatic shifts in incidence rates. The occurrence of this phenomenon in endemic areas makes mosquito-borne viruses difficult to treat.
Dengue fever is caused by infection through viruses of the family Flaviviridae. The illness is most commonly transmitted by Aedes aegypti mosquitoes in tropical and subtropical regions. Dengue virus has four different serotypes, each of which are antigenically related but have limited cross-immunity to reinfection.
Although dengue fever has a global incidence of 50-100 million cases, only several hundreds of thousands of these cases are life-threatening. The geographic prevalence of the disease can be examined by the spread of the Aedes aegypti. Over the last twenty years, there has been a geographic spread of the disease. Dengue incidence rates have risen sharply within urban areas which have recently become endemic hot spots for the disease. The recent spread of Dengue can also be attributed to rapid population growth, increased coagulation in urban areas, and global travel. Without sufficient vector control, the dengue virus has evolved rapidly over time, posing challenges to both government and public health officials.
Malaria is caused by a protozoan called Plasmodium falciparum. P. falciparum parasites are transmitted mainly by the Anopheles gambiae complex in rural Africa. In just this area, P. falciparum infections comprise an estimated 200 million clinical cases and 1 million annual deaths. 75% of individuals afflicted in this region are children. As with dengue, changing environmental conditions have led to novel disease characteristics. Due to increased illness severity, treatment complications, and mortality rates, many public health officials concede that malaria patterns are rapidly transforming in Africa. Scarcity of health services, rising instances of drug resistance, and changing vector migration patterns are factors that public health officials believe contribute to malaria’s dissemination.
Climate heavily affects mosquito vectors of malaria and dengue. Climate patterns influence the lifespan of mosquitos as well as the rate and frequency of reproduction. Climate change impacts have been of great interest to those studying these diseases and their vectors. Additionally, climate impacts mosquito blood feeding patterns as well as extrinsic incubation periods. Climate consistency gives researchers an ability to accurately predict annual cycling of the disease but recent climate unpredictability has eroded researchers’ ability to track the disease with such precision.
Japanese encephalitis (JE) is the leading cause of viral encephalitis in Asia, with up to 70,000 cases reported annually. Case-fatality rates range from 0.3% to 60% and depend on the population and age. Rare outbreaks in U.S. territories in the Western Pacific have also occurred. Residents of rural areas in endemic locations are at highest risk; Japanese encephalitis does not usually occur in urban areas.
Countries which have had major epidemics in the past, but which have controlled the disease primarily by vaccination, include China, South Korea, Japan, Taiwan and Thailand. Other countries that still have periodic epidemics include Vietnam, Cambodia, Myanmar, India, Nepal, and Malaysia. Japanese encephalitis has been reported in the Torres Strait Islands and two fatal cases were reported in mainland northern Australia in 1998. There were reported cases in Kachin State, Myanmar in 2013. The spread of the virus in Australia is of particular concern to Australian health officials due to the unplanned introduction of "Culex gelidus", a potential vector of the virus, from Asia. However, the current presence on mainland Australia is minimal. There had been 116 deaths reported in Odisha's backward Malkangiri district of India in 2016.
Human, cattle, and horses are dead-end hosts as the disease manifests as fatal encephalitis. Swine acts as an amplifying host and has a very important role in the epidemiology of the disease. Infection in swine is asymptomatic, except in pregnant sows, when abortion and fetal abnormalities are common sequelae. The most important vector is "Culex tritaeniorhynchus", which feeds on cattle in preference to humans. It has been proposed that moving swine away from human habitation can divert the mosquito away from humans and swine. The natural hosts of the Japanese encephalitis virus are birds, not humans, and many believe the virus will therefore never be completely eliminated. In November 2011, the Japanese encephalitis virus was reported in "Culex bitaeniorhynchus" in South Korea.
Recently whole genome microarray research of neurons infected with the Japanese Encephalitis virus has shown that neurons play an important role in their own defense against Japanese Encephalitis infection. Although this challenges the long-held belief that neurons are immunologically quiescent, an improved understanding of the proinflammatory effects responsible for immune-mediated control of viral infection and neuronal injury during Japanese Encephalitis infection is an essential step for developing strategies for limiting the severity of CNS disease.
A number of drugs have been investigated to either reduce viral replication or provide neuroprotection in cell lines or studies upon mice. None are currently advocated in treating human patients.
- The use of rosmarinic acid, arctigenin, and oligosaccharides with degree of polymerization 6 from "Gracilaria" sp. or "Monostroma" "nitidum" have been shown to be effective in a mouse model of Japanese encephalitis.
- Curcumin has been shown to impart neuroprotection against Japanese Encephalitis infection in an in vitro study. Curcumin possibly acts by decreasing cellular reactive oxygen species level, restoration of cellular membrane integrity, decreasing pro-apoptotic signaling molecules, and modulating cellular levels of stress-related proteins. It has also been shown that the production of infective viral particles from previously infected neuroblastoma cells are reduced, which is achieved by the inhibition of ubiquitin-proteasome system.
- Minocycline in mice resulted in marked decreases in the levels of several markers, viral titer, and the level of proinflammatory mediators and also prevents blood brain barrier damage.
Rocio viral encephalitis is an epidemic flaviviral disease of humans first observed in São Paulo State, Brazil, in 1975. Low-level enzootic transmission is likely continuing in the epidemic zone, and with increased deforestation and population expansion, additional epidemics caused by Rocio virus are highly probable. If migratory species of birds are, or become involved in, the virus transmission cycle, the competency of a wide variety of mosquito species for transmitting Rocio virus experimentally suggest that the virus may become more widely distributed. The encephalitis outbreak in the western hemisphere caused by West Nile virus, a related flavivirus, highlights the potential for arboviruses to cause severe problems far from their source enzootic foci.
The causative Rocio virus belongs to the genus "Flavivirus" (the same genus as the Zika virus) in family Flaviviridae and is closely related serologically to Ilhéus, St. Louis encephalitis, Japanese encephalitis and Murray Valley encephalitis viruses.
Most of the time, Zika fever resolves on its own in 2 to 7 days, but rarely, some people develop Guillain–Barré syndrome. The fetus of a pregnant woman who has Zika fever may die or be born with congenital central nervous system malformations, like microcephaly.
Zika virus is a mosquito-borne flavivirus closely related to the dengue and yellow fever viruses. While mosquitoes are the vector, the main reservoir species remains unknown, though serological evidence has been found in both West African monkeys and rodents.
There is a re-emergence of mosquito vector viruses (arthropod-borne viruses) called arboviruses carried by the "Aedes aegypti" mosquito. Examples are the Zika virus, chikungunya virus, yellow fever and dengue fever. The re-emergence of the viruses has been at a faster rate, and over a wider geographic area, than in the past. The rapid re-emergence is due to expanding global transportation networks, the mosquito's increasing ability to adapt to urban settings, the disruption of traditional land use and the inability to control expanding mosquito populations. Like malaria, other arboviruses do not have a vaccine. The only exception is yellow fever. Prevention is focused on reducing the adult mosquito populations, controlling mosquito larvae and protecting individuals from mosquito bites. Depending on the mosquito vector, and the affected community, a variety of prevention methods may be deployed at one time.
The virus is transmitted through mosquito vectors, as well as through contact with the tissue of infected animals. Two species—"Culex tritaeniorhynchus" and "Aedes vexans"—are known to transmit the virus. Other potential vectors include "Aedes caspius", "Aedes mcintosh", "Aedes ochraceus," "Culex pipiens", "Culex antennatus", "Culex perexiguus", "Culex zombaensis" and "Culex quinquefasciatus". Contact with infected tissue is considered to be the main source of human infections. The virus has been isolated from two bat species: the Peter's epauletted fruit bat ("Micropteropus pusillus") and the aba roundleaf bat ("Hipposideros abae"), which are believed to be reservoirs for the virus.
West Nile virus (WNV) is a single-stranded RNA virus that causes West Nile fever. It is a member of the family Flaviviridae, specifically from the genus Flavivirus which also contain the Zika virus, dengue virus, and the yellow fever virus. The West Nile virus is primarily transmitted through mosquitoes, mostly by the Culex species. However, ticks have been found to carry the virus. The primary hosts of WNV are birds, so that the virus remains within a "bird-mosquito-bird" transmission cycle.
During 1975 and 1976, Rocio virus was responsible for several epidemics of meningoencephalitis in coastal communities in southern São Paulo, Brazil. The outbreaks affected over 1,000 people and killed about 10% of those infected, but apparently responded well to treatment for viral encephalitides. The disease progresses rapidly after onset, with patients dying within 5 days of symptoms first appearing. The disease first presents with fever, headache, vomiting, and conjunctivitis, then progresses to neurological symptoms (confusion, disorientation, etc.) and muscle weakness; about one-third of cases enter a coma, and a third of those patients die, although supportive care such as intensive nursing and symptomatic treatment might reduce the case fatality rate to 4%. Survivors show neurological and psychological after-effects (sequelae) in about 20% of cases.
EVD has a high risk of death in those infected which varies between 25 percent and 90 percent of those infected. , the average risk of death among those infected is 50 percent. The highest risk of death was 90 percent in the 2002–2003 Republic of the Congo outbreak.
Death, if it occurs, follows typically six to sixteen days after symptoms appear and is often due to low blood pressure from fluid loss. Early supportive care to prevent dehydration may reduce the risk of death.
If an infected person survives, recovery may be quick and complete. Prolonged cases are often complicated by the occurrence of long-term problems, such as inflammation of the testicles, joint pains, muscular pain, skin peeling, or hair loss. Eye symptoms, such as light sensitivity, excess tearing, and vision loss have been described.
Ebola can stay in some body parts like the eyes, breasts, and testicles after infection. Sexual transmission after recovery has been suspected. If sexual transmission occurs following recovery it is believed to be a rare event. One case of a condition similar to meningitis has been reported many months after recovery as of Oct. 2015.
A study of 44 survivors of the Ebola virus in Sierra Leone reported musculoskeletal pain in 70%, headache in 48% and eye problems in 14%.
TBE is caused by tick-borne encephalitis virus, a member of the genus "Flavivirus" in the family Flaviviridae. It was first isolated in 1937. Three virus sub-types are described: European or Western tick-borne encephalitis virus, Siberian tick-borne encephalitis virus, and Far-Eastern tick-borne encephalitis virus (formerly known as Russian spring summer encephalitis virus).
Russia and Europe report about 5,000–7,000 human cases annually.
The former Soviet Union conducted research on tick borne diseases, including the TBE viruses.
It is transmitted by the bite of several species of infected ticks, including "Ixodes scapularis", "I. ricinus" and "I. persulcatus", or (rarely) through the non-pasteurized milk of infected cows.
There is no cure for EEE. Treatment consists of corticosteroids, anticonvulsants, and supportive measures (treating symptoms) such as intravenous fluids, tracheal intubation, and antipyretics. About four percent of humans known to be infected develop symptoms, with a total of about six cases per year in the US. A third of these cases die, and many survivors suffer permanent brain damage.