Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Cryoglobulinemic purpura is a skin condition characterized by purpura and occurring most frequently in multiple myeloma and macroglobulinemia.
Hematopoietic ulcers are those occurring with sickle cell anemia, congenital hemolytic anemia, polycythemia vera, thrombocytopenic purpura, macroglobulinemia, and cryoglobulinemia.
Treatment of Type I disease is generally directed towards treating the underlying pre-malignant or malignant disorder (see plasma cell dyscrasia, Waldenström's macroglobulinemia, and chronic lymphocytic leukemia). This involves appropriate chemotherapy regimens which may include bortezomib (promotes cell death by apoptosis in cells accumulating immunoglobulins) in patients with monoclonal immunoglobulin-induced renal failure and rituximab (antibody directed against CD20 surface antigen-bearing lymphocytes) in patients with Waldenstroms macroglobulonemia).
While the prognosis of cryofibrinoginemic disease varies greatly depending on its severity as well as the severity of its associated disorders, satisfactory clinical outcomes are reported in 50-80% of patients with primary or secondary disease treated with corticosteroid and/or immunosuppressive regimens. However, relapses occur within the first 6 months after stopping or decreasing therapy in 40-76% of cases. Sepsis resulting from infection of necrotic tissue is the most common threat to life in primary disease whereas the associated disorder is a critical determinant of prognosis in secondary disease.
All patients with symptomatic cryoglobulinemia are advised to avoid, or protect their extremities, from exposure to cold temperatures. Refrigerators, freezers, and air-conditioning represent dangers of such exposure.
Current medical treatments result in survival of some longer than 10 years; in part this is because better diagnostic testing means early diagnosis and treatments. Older diagnosis and treatments resulted in published reports of median survival of approximately 5 years from time of diagnosis. Currently, median survival is 6.5 years. In rare instances, WM progresses to multiple myeloma.
The International Prognostic Scoring System for Waldenström’s Macroglobulinemia (IPSSWM) is a predictive model to characterise long-term outcomes. According to the model, factors predicting reduced survival are:
- Age > 65 years
- Hemoglobin ≤ 11.5 g/dL
- Platelet count ≤ 100×10/L
- B2-microglobulin > 3 mg/L
- Serum monoclonal protein concentration > 70 g/L
The risk categories are:
- Low: ≤ 1 adverse variable except age
- Intermediate: 2 adverse characteristics or age > 65 years
- High: > 2 adverse characteristics
Five-year survival rates for these categories are 87%, 68% and 36%, respectively. The corresponding median survival rates are 12, 8, and 3.5 years.
The IPSSWM has been shown to be reliable. It is also applicable to patients on a rituximab-based treatment regimen. An additional predictive factor is elevated serum lactate dehydrogenase (LDH).
Of all cancers involving the lymphocytes, 1% of cases are WM.
WM is a rare disorder, with fewer than 1,500 cases occurring in the United States annually. The median age of onset of WM is between 60 and 65 years, with some cases occurring in late teens.
Paraproteinemia, also known as monoclonal gammopathy, is the presence of excessive amounts of paraprotein or single monoclonal gammaglobulin in the blood. It is usually due to an underlying immunoproliferative disorder or hematologic neoplasms, especially multiple myeloma. It is sometimes considered equivalent to plasma cell dyscrasia.
Causes of paraproteinemia include the following:
- Leukemias and lymphomas of various types, but usually B-cell Non-Hodgkin lymphomas with a plasma cell component.
- Myeloma
- Plasmacytoma
- Lymphoplasmacytic lymphoma
- Idiopathic (no discernible cause): some of these will be revealed as leukemias or lymphomas over the years.
- Monoclonal gammopathy of undetermined significance
- Primary AL amyloidosis (light chains only)
Lymphoproliferative disorders such as B cell lymphomas, T cell lymphomas, chronic lymphocytic leukemia, and various plasma cell dyscrasias (e.g. multiple myeloma, Waldenström's macroglobulinemia, and the premalignant precursors to these two diseases, MGUS, smoldering multiple myeloma, IgM MGUS, and smoldering Waldenström's macroglobulinemia as well as adenocarcinomas of the stomach, liver, lung, colon, and other solid tumor cancers have been reported to be associated with symptomatic or asymptomatic cryfibrinogenemia.
Evans syndrome is rare, serious, and has a reported mortality rate of 7%.
It has been observed that there is a risk of developing other autoimmune problems and hypogammaglobulinemia, with recent research finding that 58% of children with Evans syndrome have CD4-/CD8- T cells which is a strong predictor for having autoimmune lymphoproliferative syndrome.
Overall prognosis is good in most patients, with one study showing recovery occurring in 94% and 89% of children and adults, respectively (some having needed treatment). In children under ten, the condition recurs in about a third of all cases and usually within the first four months after the initial attack. Recurrence is more common in older children and adults.
Vasculitis secondary to connective tissue disorders. Usually secondary to systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), relapsing polychondritis, Behçet's disease, and other connective tissue disorders.
Vasculitis secondary to viral infection. Usually due to hepatitis B and C, HIV, cytomegalovirus, Epstein-Barr virus, and Parvo B19 virus.
Drug-induced purpura is a skin condition that may be related to platelet destruction, vessel fragility, interference with platelet function, or vasculitis.
The mortality rate is around 95% for untreated cases, but the prognosis is reasonably favorable (80–90% survival) for patients with idiopathic TTP diagnosed and treated early with plasmapheresis.
Amyloid purpura affects a minority of individuals with amyloidosis. For example, purpura is present early in the disease in approximately 15% of patients with primary systemic amyloidosis.
By tradition, the term idiopathic thrombocytopenic purpura is used when the cause is idiopathic. However, most cases are now considered to be immune-mediated.
Another form is thrombotic thrombocytopenic purpura.
Nonthrombocytopenic purpura is a type of purpura (red or purple skin discoloration) not associated with thrombocytopenia.
Examples/causes include:
- Henoch–Schönlein purpura.
- Hereditary hemorrhagic telangiectasia
- Congenital cytomegalovirus
- Meningococcemia
Thrombocytopenia affects a few percent of newborns, and its prevalence in neonatal intensive care units (NICU) is high. Normally, it is mild and resolves without consequences. Most cases affect preterm birth infants and result from placental insufficiency and/or fetal hypoxia. Other causes, such as alloimmunity, genetics, autoimmunity, and infection, are less frequent.
Thrombocytopenia that starts after the first 72 hours since birth is often the result of underlying sepsis or necrotizing enterocolitis (NEC). In the case of infection, PCR tests may be useful for rapid pathogen identification and detection of antibiotic resistance genes. Possible pathogens include viruses (e.g. Cytomegalovirus (CMV), rubella virus, HIV), bacteria (e.g. "Staphylococcus sp.", "Enterococcus sp.", "Streptococcus agalactiae" (GBS), "Listeria monocytogenes", "Escherichia coli", "Haemophilus influenzae", "Klebsiella pneumoniae", "Pseudomonas aeruginosa", "Yersinia enterocolitica"), fungi (e.g. "Candida sp."), and "Toxoplasma gondii". The severity of thrombocytopenia may be correlated with pathogen type; some research indicates that the most severe cases are related to fungal or gram-negative bacterial infection. The pathogen may be transmitted during or before birth, by breast feeding, or during transfusion. Interleukin-11 is being investigated as a drug for managing thrombocytopenia, especially in cases of sepsis or necrotizing enterocolitis (NEC).
HSP occurs more often in children than in adults, and usually follows an upper respiratory tract infection. Half of affected patients are below the age of six, and 90% are under ten. It occurs about twice as often in boys as in girls. The incidence of HSP in children is about 20 per 100,000 children per year, making it the most common vasculitis in children.
Cases of HSP may occur anytime throughout the year, but some studies have found that fewer cases occur during the summer months.
Secondary TTP is diagnosed when the patient's history mentions one of the known features associated with TTP. It comprises about 40% of all cases of TTP. Predisposing factors are:
- Cancer
- Bone marrow transplantation
- Pregnancy
- Medication use:
- Antiviral drugs (acyclovir)
- Certain chemotherapy medications such as gemcitabine and mitomycin C
- Quinine
- Oxymorphone
- Quetiapine
- Bevacizumab
- Sunitinib
- Platelet aggregation inhibitors (ticlopidine, clopidogrel, and prasugrel)
- Immunosuppressants (ciclosporin, mitomycin, tacrolimus/FK506, interferon-α)
- Hormone altering drugs (estrogens, contraceptives, hormone replacement therapy)
- HIV-1 infection
The mechanism of secondary TTP is poorly understood, as ADAMTS13 activity is generally not as depressed as in idiopathic TTP, and inhibitors cannot be detected. Probable etiology may involve, at least in some cases, endothelial damage, although the formation of thrombi resulting in vessel occlusion may not be essential in the pathogenesis of secondary TTP. These factors may also be considered a form of secondary aHUS; patients presenting with these features are, therefore, potential candidates for anticomplement therapy.
Thrombocytopenic purpura are purpura associated with a reduction in circulating blood platelets which can result from a variety of causes, such as kaposi sarcoma.
Purpura fulminans is rare and most commonly occurs in babies and small children but can also be a rare manifestation in adults when it is associated with severe infections. For example, Meningococcal septicaemia is complicated by purpura fulminans in 10–20% of cases among children. Purpura fulminans associated with congenital (inherited) protein C deficiency occurs in 1:500,000–1,000,000 live births.
Considered a rare to very rare autoimmune disorder it has had few studies with cohorts often less than 30.
Patients usually present with systemic symptoms with single or multiorgan dysfunction. Common (and nonspecific) complaints include fatigue, weakness, fever, arthralgias, abdominal pain, hypertension, renal insufficiency, and neurologic dysfunction. The following symptoms should raise a strong suspicion of a vasculitis:
- Mononeuritis multiplex. Also known as asymmetric polyneuropathy, in a non-diabetic this is suggestive of vasculitis.
- Palpable purpura. If patients have this in isolation, it is most likely due to cutaneous leukocytoclastic vasculitis. If the purpura is in combination with systemic organ involvement, it is most likely to be Henoch-Schonlein purpura or microscopic polyarteritis.
- Pulmonary-renal syndrome. Individuals who are coughing up blood and have kidney involvement are likely to have granulomatosis with polyangiitis, microscopic polyangiitis, or anti-GBM disease (Goodpasture's syndrome).