Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Dyslexic children require special instruction for word analysis and spelling from an early age. While there are fonts that may help people with dyslexia better understand writing, this might simply be due to the added spacing between words. The prognosis, generally speaking, is positive for individuals who are identified in childhood and receive support from friends and family.
Prelingual hearing loss can be either acquired, meaning it occurred after birth due to illness or injury, or it can be congenital, meaning it was present at birth. Congenital hearing loss can be caused by genetic or nongenetic factors. The nongenetic factors account for about one fourth of the congenital hearing losses in infants. These factors could include: Maternal infections, such as rubella, cytomegalovirus, or herpes simplex virus, lack of oxygen, maternal diabetes, toxemia during pregnancy, low birth weight, prematurity, birth injuries, toxins including drugs and alcohol consumed by the mother during pregnancy, and complications associated with the Rh factor in the blood/jaundice. Genetic factors account for over half of the infants with congenital hearing loss. Most of these are caused by an autosomal recessive hearing loss or an autosomal dominant hearing loss. Autosomal recessive hearing loss is when both parents carry the recessive gene, and pass it on to their child. The autosomal dominant hearing loss is when an abnormal gene from one parent is able to cause hearing loss even though the matching gene from the other parent is normal.
Each year in the United States, approximately 12,000 babies are born with hearing loss. Profound hearing loss occurs in somewhere between 4 to 11 per every 10,000 children.
Through the use of compensation strategies, therapy and educational support, dyslexic individuals can learn to read and write. There are techniques and technical aids which help to manage or conceal symptoms of the disorder. Removing stress and anxiety alone can sometimes improve written comprehension. For dyslexia intervention with alphabet-writing systems, the fundamental aim is to increase a child's awareness of correspondences between graphemes (letters) and phonemes (sounds), and to relate these to reading and spelling by teaching how sounds blend into words. It has been found that reinforced collateral training focused on reading and spelling yields longer-lasting gains than oral phonological training alone. Early intervention that is done for children at a young age can be successful in reducing reading failure.
There is some evidence that the use of specially-tailored fonts may help with dyslexia. These fonts, which include Dyslexie, OpenDyslexic, and Lexia Readable, were created based on the idea that many of the letters of the Latin alphabet are visually similar and may, therefore, confuse people with dyslexia. Dyslexie and OpenDyslexic both put emphasis on making each letter more distinctive in order to be more easily identified. The benefits, however, might simply be due to the added spacing between words.
There have been many studies conducted regarding intervention in dyslexia. Among these studies one meta-analysis found that there was functional activation as a result.
There is no evidence demonstrating that the use of music education is effective in improving dyslexic adolescents' reading skills.
Blindness can occur in combination with such conditions as intellectual disability, autism spectrum disorders, cerebral palsy, hearing impairments, and epilepsy. Blindness in combination with hearing loss is known as deafblindness.
It has been estimated that over half of completely blind people have non-24-hour sleep–wake disorder, a condition in which a person's circadian rhythm, normally slightly longer than 24 hours, is not entrained (synchronized) to the light/dark cycle.
A reading disability is a condition in which a sufferer displays difficulty reading resulting primarily from neurological factors. Developmental Dyslexia, Alexia (acquired dyslexia), and Hyperlexia (word-reading ability well above normal for age and IQ).
"Developmental prosopagnosia" (DP), also called "Congenital prosopagnosia" (CP), is a face-recognition deficit that is lifelong, manifesting in early childhood, and that cannot be attributed to acquired brain damage. A number of studies have found functional deficits in DP both on the basis of EEG measures and fMRI. It has been suggested that a genetic factor is responsible for the condition. The term "hereditary prosopagnosia" was introduced if DP affected more than one family member, essentially accenting the possible genetic contribution of this condition. To examine this possible genetic factor, 689 randomly selected students were administered a survey in which seventeen developmental prosopagnosics were quantifiably identified. Family members of fourteen of the DP individuals were interviewed to determine prosopagnosia-like characteristics, and in all fourteen families, at least one other affected family member was found.
In 2005, a study led by Ingo Kennerknecht showed support for the proposed congenital disorder form of prosopagnosia. This study provides epidemiological evidence that congenital prosopagnosia is a frequently occurring cognitive disorder that often runs in families. The analysis of pedigree trees formed within the study also indicates that the segregation pattern of hereditary prosopagnosia (HPA) is fully compatible with autosomal dominant inheritance. This mode of inheritance explains why HPA is so common among certain families (Kennerknecht et al. 2006).
There are many developmental disorders associated with an increased likelihood that the person will have difficulties in face perception, of which the person may or may not be aware. The mechanism by which these perceptual deficits take place is largely unknown. A partial list of some disorders that often have prosopagnosiac components would include nonverbal learning disorder, Alzheimer's disease, and autism in general. However, these types of disorders are very complicated, so arbitrary assumptions should be avoided.
In 2012, it was shown that developmental prosopagnosia cases show poor integration of low and high spatial frequency information.
Of these, cataract is responsible for >65%, or more than 22 million cases of blindness, and glaucoma is responsible for 6 million cases.
Cataracts: is the congenital and pediatric pathology that describes the greying or opacity of the crystalline lens, which is most commonly caused by intrauterine infections, metabolic disorders, and genetically transmitted syndromes. Cataracts are the leading cause of child and adult blindness that doubles in prevalence with every ten years after the age of 40. Consequently, today cataracts are more common among adults than in children. That is, people face higher chances of developing cataracts as they age. Nonetheless, cataracts tend to have a greater financial and emotional toll upon children as they must undergo expensive diagnosis, long term rehabilitation, and visual assistance. Also, according to the Saudi Journal for Health Sciences, sometimes patients experience irreversible amblyopia after pediatric cataract surgery because the cataracts prevented the normal maturation of vision prior to operation. Despite the great progress in treatment, cataracts remain a global problem in both economically developed and developing countries. At present, with the variant outcomes as well as the unequal access to cataract surgery, the best way to reduce the risk of developing cataracts is to avoid smoking and extensive exposure to sun light (i.e. UV-B rays).
National Institute of Neurological Disorders and Stroke defines reading disability or dyslexia as follows: "Dyslexia is a brain-based type of learning disability that specifically impairs a person's ability to read. These individuals typically read at levels significantly lower than expected despite having normal intelligence. Although the disorder varies from person to person, common characteristics among people with dyslexia are difficulty with spelling, phonological processing (the manipulation of sounds), and/or rapid visual-verbal responding. In adults, dyslexia usually occurs after a brain injury or in the context of dementia. It can also be inherited in some families, and recent studies have identified a number of genes that may predispose an individual to developing dyslexia."
The NINDS definition is not in keeping with the bulk of scientific studies that conclude that there is no evidence to suggest that dyslexia and intelligence are related. The Rose Review 2009 Definition is more in keeping with modern research and debunked discrepancy model of dyslexia diagnosis:
- Dyslexia is a learning difficulty that primarily affects the skills involved in accurate and fluent word reading and spelling.
- Characteristic features of dyslexia are difficulties in phonological awareness, verbal memory and verbal processing speed.
- Dyslexia occurs across the range of intellectual abilities.
- It is best thought of as a continuum, not a distinct category, and there are no clear cut-off points.
- Co-occurring difficulties may be seen in aspects of language, motor co-ordination, mental calculation, concentration and personal organisation, but these are not, by themselves, markers of dyslexia.
- A good indication of the severity and persistence of dyslexic difficulties can be gained by examining how the individual responds or has responded to well founded intervention.
Language-based learning disabilities or LBLD are "heterogeneous" neurological differences that can affect skills such as listening, reasoning, speaking, reading, writing, and maths calculations. It is also associated with movement, coordination, and direct attention. LBLD is not usually identified until the child reaches school age. Most people with this disability find it hard to communicate, to express ideas efficiently and what they say may be ambiguous and hard to understand
It is a neurological difference. It is often hereditary, and is frequently associated to specific language problems.
There are two types of learning disabilities: non-verbal, which includes disabilities from psychomotor difficulties to dyscalculia, and verbal, language based.
Prosopagnosia can be caused by lesions in various parts of the inferior occipital areas (occipital face area), fusiform gyrus (fusiform face area), and the anterior temporal cortex. Positron emission tomography (PET) and fMRI scans have shown that, in individuals without prosopagnosia, these areas are activated specifically in response to face stimuli. The inferior occipital areas are mainly involved in the early stages of face perception and the anterior temporal structures integrate specific information about the face, voice, and name of a familiar person.
Acquired prosopagnosia can develop as the result of several neurologically damaging causes. Vascular causes of prosopagnosia include posterior cerebral artery infarcts (PCAIs) and hemorrhages in the infero-medial part of the temporo-occipital area. These can be either bilateral or unilateral, but if they are unilateral, they are almost always in the right hemisphere. Recent studies have confirmed that right hemisphere damage to the specific temporo-occipital areas mentioned above is sufficient to induce prosopagnosia. MRI scans of patients with prosopagnosia showed lesions isolated to the right hemisphere, while fMRI scans showed that the left hemisphere was functioning normally. Unilateral left temporo-occipital lesions result in object agnosia, but spare face recognition processes, although a few cases have been documented where left unilateral damage resulted in prosopagnosia. It has been suggested that these face recognition impairments caused by left hemisphere damage are due to a semantic defect blocking retrieval processes that are involved in obtaining person-specific semantic information from the visual modality.
Other less common etiologies include carbon monoxide poisoning, temporal lobectomy, encephalitis, neoplasm, right temporal lobe atrophy, trauma, Parkinson's disease, and Alzheimer's disease.
In adults, many of the symptoms diminish over time. Although it has been suggested that a similar diminishing of symptoms occurs in children as well, it appears more likely that most do not overcome their deficits, but instead simply learn to adjust.
Following are some precautions that should be taken to avoid aphasia, by decreasing the risk of stroke, the main cause of aphasia:
- Exercising regularly
- Eating a healthy diet
- Keeping alcohol consumption low and avoiding tobacco use
- Controlling blood pressure
It has been discovered that APD and ADHD present overlapping symptoms. Below is a ranked order of behavioral symptoms that are most frequently observed in each disorder. Professionals evaluated the overlap of symptoms between the two disorders. The order below is of symptoms that are almost always observed. This chart proves that although the symptoms listed are different, it is easy to get confused between many of them.
There is a high rate of co-occurrence between AD/HD and CAPD. Research shows that 84% of children with APD have confirmed or suspected ADHD. Co-occurrence between ADHD and APD is 41% for children with confirmed diagnosis of ADHD, and 43% for children suspected of having ADHD.
Auditory processing disorder (APD), also known as central auditory processing disorder (CAPD), is an umbrella term for a variety of disorders that affect the way the brain processes auditory information. Individuals with APD usually have normal structure and function of the outer, middle and inner ear (peripheral hearing). However, they cannot process the information they hear in the same way as others do, which leads to difficulties in recognizing and interpreting sounds, especially the sounds composing speech. It is thought that these difficulties arise from dysfunction in the central nervous system.
The American Academy of Audiology notes that APD is diagnosed by difficulties in one or more auditory processes known to reflect the function of the central auditory nervous system.
APD can affect both children and adults, although the actual prevalence is currently unknown. It has been suggested that males are twice as likely to be affected by the disorder as females, but there are no good epidemiological studies.
Stroke-associated AOS is the most common form of acquired AOS, making up about 60% of all reported acquired AOS cases. This is one of the several possible disorders that can result from a stroke, but only about 11% of stroke cases involve this disorder. Brain damage to the neural connections, and especially the neural synapses, during the stroke can lead to acquired AOS. Most cases of stroke-associated AOS are minor, but in the most severe cases, all linguistic motor function can be lost and must be relearned. Since most with this form of AOS are at least fifty years old, few fully recover to their previous level of ability to produce speech.
Other disorders and injuries of the brain that can lead to AOS include (traumatic) dementia, progressive neurological disorders, and traumatic brain injury.
As in many other agnosias, those with the disorder have difficulty recognizing their errors and often do not correct themselves.
There is no known treatment for finger agnosia. Typically, finger agnosia does not present difficulties in daily life. In most cases, visual guidance can help with any difficulty in distinguishing or moving the appropriate finger.
Finger agnosia, first defined in 1924 by Josef Gerstmann, is the loss in the ability "to distinguish, name, or recognize the fingers", not only the patient's own fingers, but also the fingers of others, and drawings and other representations of fingers. It is one of a tetrad of symptoms in Gerstmann syndrome, although it is also possible for finger agnosia to exist on its own without any other disorders. Usually, lesions to the left angular gyrus and posterior parietal areas can lead to finger agnosia.
Nonverbal learning disorder (also known as nonverbal learning disability, NLD, or NVLD) is a learning disorder characterized by verbal strengths as well as visual-spatial, motor, and social skills difficulties. It is sometimes confused with Asperger Syndrome or high IQ. Nonverbal learning disorder has never been included in the American Psychiatric Association's "Diagnostic and Statistical Manual of Mental Disorders" or the World Health Organization's "International Classification of Diseases".
Mixed receptive-expressive language disorder (DSM-IV 315.32) is a communication disorder in which both the receptive and expressive areas of communication may be affected in any degree, from mild to severe. Children with this disorder have difficulty understanding words and sentences. This impairment is classified by deficiencies in expressive and receptive language development that is not attributed to sensory deficits, nonverbal intellectual deficits, a neurological condition, environmental deprivation or psychiatric impairments. Research illustrates that 2% to 4% of 5 year olds have mixed receptive-expressive language disorder. This distinction is made when children have issues in expressive language skills, the production of language, and when children also have issues in receptive language skills, the understanding of language. Those with mixed receptive-language disorder have a normal left-right anatomical asymmetry of the planum temporale and parietale. This is attributed to a reduced left hemisphere functional specialization for language. Taken from a measure of cerebral blood flow (SPECT) in phonemic discrimination tasks, children with mixed receptive-expressive language disorder do not exhibit the expected predominant left hemisphere activation. Mixed receptive-expressive language disorder is also known as receptive-expressive language impairment (RELI) or receptive language disorder.
Gerstmann syndrome is a neuropsychiatric disorder that is characterized by a constellation of symptoms that suggests the presence of a lesion in a particular area of the brain. (It should not be confused with Gerstmann-Sträussler-Scheinker syndrome, which is a transmissible spongiform encephalopathy.) Damage to the inferior parietal lobule of the dominant hemisphere results in Gerstmann's syndrome.
It is named for Josef Gerstmann.
Constructional apraxia is characterized by an inability or difficulty to build, assemble, or draw objects. Apraxia is a neurological disorder in which people are unable to perform tasks or movements even though they understand the task, are willing to complete it, and have the physical ability to perform the movements. Constructional apraxia may be caused by lesions in the parietal lobe following stroke or it may serve as an indicator for Alzheimer's disease.
A key deficit in constructional apraxia patients is the inability to correctly copy or draw an image. There are qualitative differences between patients with left hemisphere damage, right hemisphere damage, and Alzheimer's Disease.
If the symptoms of aphasia last longer than two or three months after a stroke, a complete recovery is unlikely. However, it is important to note that some people continue to improve over a period of years and even decades. Improvement is a slow process that usually involves both helping the individual and family understand the nature of aphasia and learning compensatory strategies for communicating.
After a traumatic brain injury (TBI) or cerebrovascular accident (CVA), the brain undergoes several healing and re-organization processes, which may result in improved language function. This is referred to as spontaneous recovery. Spontaneous recovery is the natural recovery the brain makes without treatment, and the brain begins to reorganize and change in order to recover. There are several factors that contribute to a person's chance of recovery caused by stroke, including stroke size and location. Age, sex, and education have not been found to be very predictive.
Specific to aphasia, spontaneous recovery varies among affected people and may not look the same in everyone, making it difficult to predict recovery.
Though some cases of Wernicke’s aphasia have shown greater improvements than more mild forms of aphasia, people with Wernicke’s aphasia may not reach as high a level of speech abilities as those with mild forms of aphasia.
LBLD can be an enduring problem. Some people might experience overlapping learning disabilities that make improvement problematic. Others with single disabilities often show more improvement. Most subjects can achieve literacy via coping mechanisms and education.