Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Between 2 and 5% of the population in western countries have amblyopia. In the U.K., 90% of visual health appointments in the child are concerning amblyopia.
Depending on the chosen criterion for diagnosis, between 1 and 4% of the children have amblyopia.
Hemeralopia is known to occur in several ocular conditions. Cone dystrophy and achromatopsia, affecting the cones in the retina, and the anti-epileptic drug Trimethadione are typical causes. Adie's pupil which fails to constrict in response to light; Aniridia, which is absence of the iris; Albinism where the iris is defectively pigmented may also cause this. Central Cataracts, due to the lens clouding, disperses the light before it can reach the retina, is a common cause of hemeralopia and photoaversion in elderly. C.A.R (Cancer Associated Retinopathy) seen when certain cancers incite the production of deleterious antibodies against retinal components, may cause hemeralopia.
Another known cause is a rare genetic condition called Cohen Syndrome (aka Pepper Syndrome). Cohen syndrome is mostly characterized by obesity, mental retardation, and craniofacial dysmorphism due to genetic mutation at locus 8q22-23. Rarely it may have ocular complications such as hemeralopia, pigmentary chorioretinitis, optic atrophy or retinal/iris coloboma, having a serious effect on the person's vision.
Yet another cause of hemeralopia is uni- or bilateral postchiasmatic brain injury. This may also cause concomitant night blindness.
In studies of the genetic predisposition of refractive error, there is a correlation between environmental factors and the risk of developing myopia. Myopia has been observed in individuals with visually intensive occupations. Reading has also been found to be a predictor of myopia in children. It has been reported that children with myopia spent significantly more time reading than non-myopic children who spent more time playing outdoors. Socioeconomic status and higher levels of education have also been reported to be a risk factor for myopia.
Risk factors for retinal detachment include severe myopia, retinal tears, trauma, family history, as well as complications from cataract surgery.
Retinal detachment can be mitigated in some cases when the warning signs are caught early. The most effective means of prevention and risk reduction is through education of the initial signs, and encouragement for people to seek ophthalmic medical attention if they have symptoms suggestive of a posterior vitreous detachment. Early examination allows detection of retinal tears which can be treated with laser or cryotherapy. This reduces the risk of retinal detachment in those who have tears from around 1:3 to 1:20. For this reason, the governing bodies in some sports require regular eye examination.
Trauma-related cases of retinal detachment can occur in high-impact sports or in high speed sports. Although some recommend avoiding activities that increase pressure in the eye, including diving and skydiving, there is little evidence to support this recommendation, especially in the general population. Nevertheless, ophthalmologists generally advise people with high degrees of myopia to try to avoid exposure to activities that have the potential for trauma, increase pressure on or within the eye itself, or include rapid acceleration and deceleration, such as bungee jumping or roller coaster rides.
Intraocular pressure spikes occur during any activity accompanied by the Valsalva maneuver, including weightlifting. An epidemiological study suggests that heavy manual lifting at work may be associated with increased risk of rhegmatogenous retinal detachment, but this relationship is not strong. In this study, obesity also appeared to increase the risk of retinal detachment. A high Body Mass Index (BMI) and elevated blood pressure have been identified as a risk factor in non-myopic individuals.
Genetic factors promoting local inflammation and photoreceptor degeneration may also be involved in the development of the disease.
Other risk factors include the following:
- Glaucoma
- AIDS
- Cataract surgery
- Diabetic retinopathy
- Eclampsia
- Family history of retinal detachment
- Homocysteinuria
- Malignant hypertension
- Metastatic cancer, which spreads to the eye (eye cancer)
- Retinoblastoma
- Severe myopia
- Smoking and passive smoking
- Stickler syndrome
- Von Hippel-Lindau disease
A vision disorder is an impairment of the sense of vision.
It is not the same as an eye disease. Although many vision disorders do have their immediate cause in the eye, there are many other causes that may occur at other locations in the optic pathway.
Strabismus can be seen in Down syndrome, Loeys-Dietz syndrome, cerebral palsy, and Edwards syndrome. The risk is increased among those with a family history of the condition.
Distortion of vision refers to straight lines not appearing straight, but instead bent, crooked, or wavy. Usually this is caused by distortion of the retina itself. This distortion can herald a loss of vision in macular degeneration, so anyone with distorted vision should seek medical attention by an ophthalmologist promptly. Other conditions leading to swelling of the retina can cause this distortion, such as macular edema and central serous chorioretinopathy.
An Amsler grid can be supplied by an ophthalmologist so that the vision can be monitored for distortion in people who may be predisposed to this problem.
Tunnel vision implies that the peripheral vision, or side vision, is lost, while the central vision remains. Thus, the vision is like looking through a tunnel, or through a paper towel roll. Some disorders that can cause this include:
Glaucoma - severe glaucoma can result in loss of nearly all of the peripheral vision, with a small island of central vision remaining. Sometimes even this island of vision can be lost as well.
Retinitis pigmentosa - This is usually a hereditary disorder which can be part of numerous syndromes. It is more common in males. The peripheral retina develops pigmentary deposits, and the peripheral vision gradually becomes worse and worse. The central vision can be affected eventually as well. People with this problem may have trouble getting around in the dark. Cataract can be a complication as well. There is no known treatment for this disorder, and supplements of Vitamin A have not been proven to help.
Punctate Inner Choroidopathy - This condition is where vessels gro (( material is missing ))
Stroke - a stroke involving both sides of the visual part of the brain may wipe out nearly all of the peripheral vision. Fortunately, this is a very rare occurrence
Quadrantanopia, quadrantanopsia, or quadrant anopia refers to an anopia affecting a quarter of the field of vision.
It can be associated with a lesion of an optic radiation. While quadrantanopia can be caused by lesions in the temporal and parietal lobes, it is most commonly associated with lesions in the occipital lobe.
People with hemeralopia may benefit from sunglasses. Wherever possible, environmental illumination should be adjusted to comfortable level. Light-filtering lenses appear to help in people reporting photophobia.
Otherwise, treatment relies on identifying and treating any underlying disorder.
Individuals with quadrantanopia often modify their behavior to compensate for the disorder, such as tilting of the head to bring the affected visual field into view. Drivers with quadrantanopia, who were rated as safe to drive, drive slower, utilize more shoulder movements and, generally, corner and accelerate less drastically than typical individuals or individuals with quadrantanopia who were rated as unsafe to drive. The amount of compensatory movements and the frequency with which they are employed is believed to be dependent on the cognitive demands of the task; when the task is so difficult that the subject's spatial memory is no longer sufficient to keep track of everything, patients are more likely to employ compensatory behavior of biasing their gaze to the afflicted side. Teaching individuals with quadrantanopia compensatory behaviors could potentially be used to help train patients to re-learn to drive safely.
Although the best outcome is achieved if treatment is started before age 8, children older than age 12 and some adults can show improvement in the affected eye. Children from 9 to 11 who wore an eye patch and performed near-point activities (vision therapy) were four times as likely to show a two-line improvement on a standard 11-line eye chart than children with amblyopia who did not receive treatment. Adolescents aged 13 to 17 showed improvement, as well, albeit to a lesser degree than younger children. Whether such improvements are only temporary, however, is uncertain, particularly if treatment is discontinued.
Tentative evidence shows that perceptual training may be beneficial in adults.
Virtual-reality computer games where each eye receives different signals of the virtual world that the player's brain must combine to successfully play the game have shown some promise in improving both monocularity in the affected eye, as well as binocularity.
The number of people globally with refractive errors that have not been corrected was estimated at 660 million (10 per 100 people) in 2013.
The number of people globally with significant refractive errors has been estimated at one to two billion. Rates vary between regions of the world with about 25% of Europeans and 80% of Asians affected. Near-sightedness is one of the most prevalent disorders of the eye. Rates among adults are between 15-49% while rates among children are between 1.2-42%. Far-sightedness more commonly affects young children, whose eyes have yet to grow to their full length, and the elderly, who have lost the ability to compensate with their accommodation system. Presbyopia affects most people over the age of 35, and nearly 100% of people by the ages of 55-65. Uncorrected refractive error is responsible for visual impairment and disability for many people worldwide. It is one of the most common causes of vision loss along with cataracts, macular degeneration, and vitamin A deficiency.
Among fifth and sixth grade children convergence insufficiency is 13%. In studies that used standardized definitions of Convergence insufficiency, investigators have reported a prevalence of 4.2% to 6% in school and clinic settings. The standard definition of Convergence insufficiency is exophoria greater at near than at distance, a receded near point of convergence, and reduced convergence amplitudes at near.
People of all ages who have noticeable strabismus may experience psychosocial difficulties. Attention has also been drawn to potential socioeconomic impact resulting from cases of detectable strabismus. A socioeconomic consideration exists as well in the context of decisions regarding strabismus treatment, including efforts to re-establish binocular vision and the possibility of stereopsis recovery.
One study has shown that strabismic children commonly exhibit behaviors marked by higher degrees of inhibition, anxiety, and emotional distress, often leading to outright emotional disorders. These disorders are often related to a negative perception of the child by peers. This is due not only to an altered aesthetic appearance, but also because of the inherent symbolic nature of the eye and gaze, and the vitally important role they play in an individual's life as social components. For some, these issues improved dramatically following strabismus surgery. Notably, strabismus interferes with normal eye contact, often causing embarrassment, anger, and feelings of awkwardness, thereby affecting social communication in a fundamental way, with a possible negative effect on self esteem.
Children with strabismus, particularly those with exotropia (an outward turn), may be more likely to develop a mental health disorder than normal-sighted children. Researchers have theorized that esotropia (an inward turn) was not found to be linked to a higher propensity for mental illness due to the age range of the participants, as well as the shorter follow-up time period; esotropic children were monitored to a mean age of 15.8 years, compared with 20.3 years for the exotropic group. A subsequent study with participants from the same area monitored congenital esotropia patients for a longer time period; results indicated that esotropic patients "were" also more likely to develop mental illness of some sort upon reaching early adulthood, similar to those with constant exotropia, intermittent exotropia, or convergence insufficiency. The likelihood was 2.6 times that of controls. No apparent association with premature birth was observed, and no evidence was found linking later onset of mental illness to psychosocial stressors frequently encountered by those with strabismus.
Investigations have highlighted the impact that strabismus may typically have on quality of life. Studies in which subjects were shown images of strabismic and non-strabismic persons showed a strong negative bias towards those visibly displaying the condition, clearly demonstrating the potential for future socioeconomic implications with regard to employability, as well as other psychosocial effects related to an individual's overall happiness.
Adult and child observers perceived a right heterotropia as more disturbing than a left heterotropia, and child observers perceived an esotropia as "worse" than an exotropia. Successful surgical correction of strabismus—for adult patients as well as children—has been shown to have a significantly positive effect on psychological well-being.
Very little research exists regarding coping strategies employed by adult strabismics. One study categorized coping methods into three subcategories: avoidance (refraining from participation an activity), distraction (deflecting attention from the condition), and adjustment (approaching an activity differently). The authors of the study suggested that individuals with strabismus may benefit from psychosocial support such as interpersonal skills training.
No studies have evaluated whether psychosocial interventions have had any benefits on individuals undergoing strabismus surgery.
The incidence of retinal detachment in otherwise normal eyes is around 5 new cases in 100,000 persons per year. Detachment is more frequent in middle-aged or elderly populations, with rates of around 20 in 100,000 per year. The lifetime risk in normal individuals is about 1 in 300. Asymptomatic retinal breaks are present in about 6% of eyes in both clinical and autopsy studies.
- Retinal detachment is more common in people with severe myopia (above 5–6 diopters), in whom the retina is more thinly stretched. In such patients, lifetime risk rises to 1 in 20. About two-thirds of cases of retinal detachment occur in myopics. Myopic retinal detachment patients tend to be younger than non-myopic ones.
- Retinal detachment is more frequent after surgery for cataracts. The estimated long-term prevalence of retinal detachment after cataract surgery is in the range of 5 to 16 per 1000 cataract operations, but is much higher in patients who are highly myopic, with a prevalence of up to 7% being reported in one study. One study found that the probability of experiencing retinal detachment within 10 years of cataract surgery may be about 5 times higher than in the absence of treatment.
- Tractional retinal detachments can also occur in patients with proliferative diabetic retinopathy or those with proliferative retinopathy of sickle cell disease. In proliferative retinopathy, abnormal blood vessels (neovascularization) grow within the retina and extend into the vitreous. In advanced disease, the vessels can pull the retina away from the back wall of the eye, leading to tractional retinal detachment.
Although retinal detachment usually occurs in just one eye, there is a 15% chance of it developing in the other eye, and this risk increases to 25–30% in patients who have had a retinal detachment and cataracts extracted from both eyes.
CSR is a fluid detachment of macula layers from their supporting tissue. This allows choroidal fluid to leak beneath the retina. The buildup of fluid seems to occur because of small breaks in the retinal pigment epithelium.
CSR is sometimes called "idiopathic CSR" which means that its cause is unknown. Nevertheless, stress appears to play an important role. An oft-cited but potentially inaccurate conclusion is that persons in stressful occupations, such as airplane pilots, have a higher incidence of CSR.
CSR has also been associated with cortisol and corticosteroids. Persons with CSR have higher levels of cortisol. Cortisol is a hormone secreted by the adrenal cortex which allows the body to deal with stress, which may explain the CSR-stress association. There is extensive evidence to the effect that corticosteroids (e.g. cortisone), commonly used to treat inflammations, allergies, skin conditions and even certain eye conditions, can trigger CSR, aggravate it and cause relapses. In a study documented by Indian Journal of Pharmacology, a young male was using Prednisolone and began to display subretinal fluid indicative of CSR. With the discontinuation of the steroid drop the subretinal fluid resolved and did not show any sign of recurrence. Thus indicating the steroid was the probable cause of the CSR. A study of 60 persons with Cushing's syndrome found CSR in 3 (5%). Cushing's syndrome is characterized by very high cortisol levels. Certain sympathomimetic drugs have also been associated with causing the disease.
Evidence has also implicated helicobacter pylori (see gastritis) as playing a role. It would appear that the presence of the bacteria is well correlated with visual acuity and other retinal findings following an attack.
Evidence also shows that sufferers of MPGN type II kidney disease can develop retinal abnormalities including CSR caused by deposits of the same material that originally damaged the glomerular basement membrane in the kidneys.
Seeing rainbows around lights, especially at night, usually indicates swelling of the cornea. This may occur from a variety of causes which are discussed under Corneal Edema. Cataract can sometimes cause this also.
Colour vision is perceived mainly by the macula, which is the central vision portion of the retina. Thus any disorder affecting the macula may cause a disturbance in color vision. However, about 8% of males and 0.5% of females have some version of "colour blindness" from birth. Usually this is a genetically inherited trait, and is of the "red-green confusion" variety. The reds, browns, olives, and gold may be confused. Purple may be confused with blue, and pastel pinks, oranges, yellows, and greens look similar. Usually both eyes are affected equally.
There are many obscure macular retinal disorders that can lead to a loss of colour vision, and many of these syndromes are inherited as well. There may also be a problem with a generalized loss of vision with these problems as well. Other retinal problems can lead to a temporary disturbance of colour vision, such as Central serous chorioretinopathy, Macular Edema of different causes, and Macular Degeneration.
Certain types of cataract can gradually affect the colour vision, but this is usually not noticed until one cataract is removed. The cataract seems to filter out the colour blue, and everything seems more blue after cataract extraction. Optic nerve disorders such as Optic Neuritis can greatly affect colour vision, with colours seeming washed out during or after an episode.
The symptoms and signs associated with convergence insufficiency are related to prolonged, visually demanding, near-centered tasks. They may include, but are not limited to, diplopia (double vision), asthenopia (eye strain), transient blurred vision, difficulty sustaining near-visual function, abnormal fatigue,
headache, and abnormal postural adaptation, among others. In some cases, difficulty with making eye contact have been noted as a complaint amongst sufferers.
Note that some Internet resources confuse convergence and divergence dysfunction, reversing them.
Nyctalopia (from Greek νύκτ-, "nykt-" "night"; ἀλαός, "alaos" "blind, not seeing", and ὄψ, "ops" "eye"), also called night-blindness, is a condition making it difficult or impossible to see in relatively low light. It is a symptom of several eye diseases. Night blindness may exist from birth, or be caused by injury or malnutrition (for example, vitamin A deficiency). It can be described as insufficient adaptation to darkness.
The most common cause of nyctalopia is retinitis pigmentosa, a disorder in which the rod cells in the retina gradually lose their ability to respond to the light. Patients suffering from this genetic condition have progressive nyctalopia and eventually their daytime vision may also be affected. In X-linked congenital stationary night blindness, from birth the rods either do not work at all, or work very little, but the condition doesn't get worse.
Another cause of night blindness is a deficiency of retinol, or vitamin A, found in fish oils, liver and dairy products.
The opposite problem, the inability to see in bright light, is known as "hemeralopia" and is much rarer.
Since the outer area of the retina is made up of more rods than cones, loss of peripheral vision often results in night blindness. Individuals suffering from night blindness not only see poorly at night, but also require extra time for their eyes to adjust from brightly lit areas to dim ones. Contrast vision may also be greatly reduced.
Rods contain a receptor-protein called rhodopsin. When light falls on rhodopsin, it undergoes a series of conformational changes ultimately generating electrical signals which are carried to the brain via the optic nerve. In the absence of light, rhodopsin is regenerated. The body synthesizes rhodopsin from vitamin A, which is why a deficiency in vitamin A causes poor night vision.
Refractive "vision correction" surgery (especially PRK with the complication of "haze") may rarely cause a reduction in best night-time acuity due to the impairment of contrast sensitivity function (CSF) which is induced by intraocular light-scatter resulting from surgical intervention in the natural structural integrity of the cornea.
The National Eye Institute reports keratoconus is the most common corneal dystrophy in the United States, affecting about one in 2,000 Americans, but some reports place the figure as high as one in 500. The inconsistency may be due to variations in diagnostic criteria, with some cases of severe astigmatism interpreted as those of keratoconus, and" vice versa". A long-term study found a mean incidence rate of 2.0 new cases per 100,000 population per year. Some studies have suggested a higher prevalence amongst females, or that people of South Asian ethnicity are 4.4 times as likely to suffer from keratoconus as Caucasians, and are also more likely to be affected with the condition earlier.
Keratoconus is normally bilateral (affecting both eyes) although the distortion is usually asymmetric and is rarely completely identical in both corneas. Unilateral cases tend to be uncommon, and may in fact be very rare if a very mild condition in the better eye is simply below the limit of clinical detection. It is common for keratoconus to be diagnosed first in one eye and not until later in the other. As the condition then progresses in both eyes, the vision in the earlier-diagnosed eye will often remain poorer than that in its fellow.
Six genes have been found to be associated with the condition. These genes include BANP-ZNF469, COL4A4, FOXO1, FNDC3B, IMMP2L and RXRA-COL5A1. Others likely also exist.
CBS predominantly affects people with visual impairments due to old age, diabetes or other damage to the eyes or optic pathways. In particular, central vision loss due to a condition such as macular degeneration combined with peripheral vision loss from glaucoma may predispose to CBS, although most people with such deficits do not develop the syndrome.
The syndrome can also develop after bilateral optic nerve damage due to methyl alcohol poisoning.
The predominant cause of nutritional optic neuropathy is thought to be deficiency of B-complex vitamins, particularly thiamine (vitamin B), cyanocobalamin (vitamin B) and recently copper Deficiency of pyridoxine (vitamin B), niacin (vitamin B), riboflavin (vitamin B), and/or folic acid also seems to play a role. Those individuals who abuse alcohol and tobacco are at greater risk because they tend to be malnourished. Those with pernicious anemia are also at risk due to an impaired ability to absorb vitamin B from the intestinal tract.
Central serous retinopathy (CSR), also known as central serous chorioretinopathy (CSC or CSCR), is an eye disease which causes visual impairment, often temporary, usually in one eye. When the disorder is active it is characterized by leakage of fluid under the retina that has a propensity to accumulate under the central macula. This results in blurred or distorted vision (metamorphopsia). A blurred or gray spot in the central visual field is common when the retina is detached. Reduced visual acuity may persist after the fluid has disappeared.
The disease is considered of unknown cause. It mostly affects white males in the age group 20 to 50 and occasionally other groups. The condition is believed to be exacerbated by stress or corticosteroid use.
Congenital stationary night blindness is also an ophthalmologic disorder in horses with leopard spotting patterns, such as the Appaloosa. It is present at birth (congenital), not sex-linked, non-progressive and affects the animal's vision in conditions of low lighting. CSNB is usually diagnosed based on the owner's observations, but some horses have visibly abnormal eyes: poorly aligned eyes (dorsomedial strabismus) or involuntary eye movement (nystagmus). In horses, CSNB has been linked with the leopard complex color pattern since the 1970s. A 2008 study theorizes that both CSNB and leopard complex spotting patterns are linked to the TRPM1 gene. The region on horse chromosome 1 to which the "Lp" gene has now been localized also encodes a protein that channels calcium ions, a key factor in the transmission of nerve impulses. This protein, found in the retina and the skin, exists in fractional percentages of the normal levels found in homozygous "Lp/Lp" horses and so compromises the basic chemical reaction for nerve impulse transmission.