Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
A recent study from The Cleveland Clinic reported that BK viremia load > 185 000 copies/ml at the time of first positive BKV diagnosis - to be the strongest predictor for BKVAN (97% specificity and 75% sensitivity). In addition the BKV peak viral loads in blood reaching 223 000 copies/ml at any time was found to be predictive for BKVAN (91% specificity and 88% sensitivity) .
It is not known how this virus is transmitted. It is known, however, that the virus is spread from person to person, and not from an animal source. It has been suggested that this virus may be transmitted through respiratory fluids or urine, since infected individuals periodically excrete virus in the urine. A survey of 400 healthy blood donors was reported as showing that 82% were positive for IgG against BK virus.
Numerous factors have been suggested and linked to a higher risk of acquiring the infection, inclusive of malnutrition, vitamin A deficiency, absence of breastfeeding during the early stages of life, environmental pollution and overcrowding.
Mortality caused by HPIVs in developed regions of the world remains rare. Where mortality has occurred, it is principally in the three core risk groups (very young, elderly and immuno-compromised). Long term changes can however be associated with airway remodelling and are believed to be a significant cause of morbidity. The exact associations between HPIVs and diseases such as chronic obstructive pulmonary disease (COPD) are still being investigated.
In developing regions of the world, the highest risk group in terms of mortality remains pre-school children. Mortality may be as a consequence of primary viral infection or secondary problems such as bacterial infection. Predispositions, such as malnutrition and other deficiencies may further elevate the chances of mortality associated with infection.
Overall, LRI's cause approximately 25–30% of total deaths in pre-school children in the developing world. HPIVs is believed to be associated with 10% of all LRI cases, thus remaining a significant cause of mortality.
Myositis is inflammation or swelling of the muscles. Injury, medicines, infection, or an immune disorder can lead to myositis. It is a documented side effect of the lipid-lowering drugs statins and fibrates.
A viral disease (or viral infection) occurs when an organism's body is invaded by pathogenic viruses, and infectious virus particles (virions)
attach to and enter susceptible cells.
Polymyositis is an inflammatory myopathy mediated by cytotoxic T cells with an as yet unknown autoantigen, while dermatomyositis is a humorally mediated angiopathy resulting in myositis and a typical dermatitis.
The cause of polymyositis is unknown and may involve viruses and autoimmune factors. Cancer may trigger polymyositis and dermatomyositis, possibly through an immune reaction against cancer that also attacks a component of muscles.
Polymyositis and dermatomyositis are first treated with high doses of a corticosteroids
Polymyositis, like dermatomyositis, strikes females with greater frequency than males.
Of the children diagnosed with and treated for JDM, about half will recover completely. Close to 30 percent will have weakness after the disease resolves. Most children will go into remission and have their medications eliminated within two years, while others may take longer to respond or have more severe symptoms that take longer to clear up.
A common lasting effect of JDM is childhood arthritis.
The underlying cause of JDM is unknown. It most likely has a genetic component, as other autoimmune disease tend to run in the families of patients. The disease is usually triggered by a condition that causes immune system activity that does not stop as it should, but the trigger is almost certainly not the cause in most cases. Common triggers include immunizations, infections, injuries, and sunburn.
Most household disinfectants will inactivate FHV-1. The virus can survive up to 18 hours in a damp environment, but less in a dry environment and only shortly as an aerosol.
Purpura hemorrhagica may be prevented by proper management during an outbreak of strangles. This includes isolation of infected horses, disinfection of fomites, and good hygiene by caretakers. Affected horses should be isolated at least one month following infection. Exposed horses should have their temperature taken daily and should be quarantined if it becomes elevated. Prophylactic antimicrobial treatment is not recommended.
Vaccination can reduce the incidence and severity of the disease. However, horses with high SeM antibody titers are more likely to develop purpura hemorrhagica following vaccination and so these horses should not be vaccinated. Titers may be measured by ELISA.
Horses that develop purpura hemorrhagica usually have a recent history of strangles (infection with "Streptococcus equi" subsp. "equi") or vaccination (intramuscular or intranasal) for strangles. It is thought to be caused by an auto-immune reaction where antibodies against the "S. equi" M- or R-protein cross-react with proteins on endothelial cells. This results in vasculitis, leading to subsequent severe peripheral edema in the legs and ventral abdomen, as well as petechiation or ecchymoses over the mucous membranes.
Purpura hemorrhagica can also rarely be seen after infection with "S. equi" subsp."zooepidemicus", "Rhodococcus equi", "Corynebacterium pseudotuberculosis" (causative agent of pigeon fever), equine influenza virus, or equine herpes virus type 1, or without any apparent infection.
FVR is transmitted through direct contact only. It replicates in the nasal and nasopharyngeal tissues and the tonsils. Viremia (the presence of the virus in the blood) is rare. The virus is shed in saliva and eye and nasal secretions, and can also be spread by fomites. FVR has a two- to five-day incubation period. The virus is shed for one to three weeks postinfection. Latently infected cats (carriers) will shed FHV-1 intermittently for life, with the virus persisting within the trigeminal ganglion. Stress and use of corticosteroids precipitate shedding. Most disinfectants, antiseptics and detergents are effective against the virus.
The prognosis of mixed connective tissue disease is in one third of cases worse than that of systemic lupus erythematosus (SLE). In spite of prednisone treatment, this disease is progressive and may in many cases evolve into a progressive systemic sclerosis (PSS), also referred to as diffuse cutaneous systemic scleroderma (dcSSc) which has a poor outcome. In some cases though the disease is mild and may only need aspirin as a treatment and may go into remission where no Anti-U1-RNP antibodies are detected, but that is rare or within 30% of cases. Most deaths from MCTD are due to heart failure caused by pulmonary arterial hypertension (PAH).
Meningitis is a very common in children. Newborns can develop herpes virus infections through contact with infected secretions in the birth canal. Other viral infections are acquired by breathing air contaminated with virus-containing droplets exhaled by an infected person. Arbovirus infections are acquired from bites by infected insects (called epidemic encephalitis). Viral central nervous system infections in newborns and infants usually begin with fever. The inability of infants to communicate directly makes it difficult to understand their symptoms. Newborns may have no other symptoms and may initially not otherwise appear ill. Infants older than a month or so typically become irritable and fussy and refuse to eat. Vomiting is common. Sometimes the soft spot on top of a newborn's head (fontanelle) bulges, indicating an increase in pressure on the brain. Because irritation of the meninges is worsened by movement, an infant with meningitis may cry more, rather than calm down, when picked up and rocked. Some infants develop a strange, high-pitched cry. Infants with encephalitis often have seizures or other abnormal movements. Infants with severe encephalitis may become lethargic and comatose and then die. To make the diagnosis of meningitis or the diagnosis of encephalitis, doctors do a spinal tap (lumbar puncture) to obtain cerebrospinal fluid (CSF) for laboratory analysis in children.
Coxsackievirus shows a cardiac tropism partly due to the high expression of coxsackievirus and adenoviris receptors (CAR) in cardiomyocytes. Coxsackievirus B genome is approximately 7.4 Kb and translated as a polycistronic polyprotein. Upon translation, the polyprotein is cleaved by two essential viral proteases, 2A and 3C. The viral protease 2A cleaves the proteins in a sequence specific manner. These viral proteases can also act on host proteins exerting negative effects on the residing cell. Enteroviral protease 2A can cleave the cytoskeletal dystrophin protein in cardiomyocytes disrupting the dystrophin glycoprotein (DCG) complex. The cleavage site of dystrophin by protease 2A occurs in the hinge 3 region of the protein resulting a disruption of DCG complex and loss of sarcolemma integrity and increasing myocyte permeability. This eventually results in similar cardiac deformities observed in dilated cardiomyopathy caused by hereditary defects in dystrophin in DMD patients. Additionally, dystrophin deficiency has been shown to increase the severity in dilated cardiomyopathy in a mouse model for DMD. The increased susceptibility of dystrophin deficient heart to coxsackievirus-induced dilated cardiomyopathy is attributed to more efficient release of the virus from infected cells resulting an increased in viral-mediated cytopathic effects.
Viral induced dilated cardiomyopathy can be characterized using different methods. A recent study showed in coxsackievirus infected heart proteome, increased levels of fibrotic extracellular matrix proteins and reduced amounts of energy-producing enzymes can be observed suggesting they could be characteristic in enteroviral cardiomyopathy.
There are notable differences between the hereditary dilated cardiomyopathy in DMD and acute coxsackieviral-mediated cardiomyopathy.
1. The amount of virally infected cardiomyocytes varies in different stages of the disease. In a mouse model, at the acute stage (7 days after infection with coxsackievirus B3) approximately 10% of the myocytes are infected and could affect overall cardiac function. In chronic murine infection, the percentage of infected cardiomyocytes are much lower.
2. Unlike in the DMD, in coxsackievirus induced cardiomyopathy, acute cleavage of dystrophin in cardiomyocytes is unlikely to induce any prompt compensatory mechanism since host cell translation mechanism is defective in the infected cells.
Many viral infections of the central nervous system occur in seasonal peaks or as epidemics, whereas others, such as herpes simplex encephalitis, are sporadic. In endemic areas it is mostly a disease of children, but as the disease spreads to new regions, or nonimmune travelers visit endemic regions, nonimmune adults are also affected.
Eosinophilia can be idiopathic (primary) or, more commonly, secondary to another disease. In the Western World, allergic or atopic diseases are the most common causes, especially those of the respiratory or integumentary systems. In the developing world, parasites are the most common cause. A parasitic infection of nearly any bodily tissue can cause eosinophilia.
Diseases that feature eosinophilia as a sign include:
- Allergic disorders
- Asthma
- Hay fever
- Drug allergies
- Allergic skin diseases
- Pemphigus
- Dermatitis herpetiformis
- IgG4-related disease
- Parasitic infections
- Addison's disease and stress-induced suppression of adrenal gland function
- Some forms of malignancy
- Acute lymphoblastic leukemia
- Chronic myelogenous leukemia
- Eosinophilic leukemia
- Clonal eosinophilia
- Hodgkin lymphoma
- Some forms of non-Hodgkin lymphoma
- Lymphocyte-variant hypereosinophilia
- Systemic mastocytosis
- Systemic autoimmune diseases
- Systemic lupus erythematosus
- Kimura disease
- Eosinophilic granulomatosis with polyangiitis
- Eosinophilic fasciitis
- Eosinophilic myositis
- Eosinophilic esophagitis
- Eosinophilic gastroenteritis
- Cholesterol embolism (transiently)
- Coccidioidomycosis (Valley fever), a fungal disease prominent in the US Southwest.
- Human immunodeficiency virus infection
- Interstitial nephropathy
- Hyperimmunoglobulin E syndrome, an immune disorder characterized by high levels of serum IgE
- Idiopathic hypereosinophilic syndrome.
- Congenital disorders
- Hyperimmunoglobulin E syndrome
- Omenn syndrome
- Familial eosinophilia
The most common cause of hepatitis is viral. Although they are classified under the disease hepatitis, these viruses are not all related.
Every year between 2.18 and 7.7 people per million receive a diagnosis of PM or DM. Around 3.2 children per million per year are diagnosed with DM (termed juvenile dermatomyositis), with an average age of onset of seven years. Diagnosis of adult DM commonly occurs between 30 and 50 years of age. PM is an adult disease, usually emerging after the age of twenty. PM and DM are more common in females, more common in Caucasians, and least common in Asians. At any given time, about 35.5 people per million have IBM; it emerges after the age of 30 (usually after 50), and may be more common in males.
Coxsackieviruses-induced cardiomyopathy are positive-stranded RNA viruses in picornavirus family and the genus enterovirus, acute enterovirus infections such as Coxsackievirus B3 have been identified as the cause of virally induced acute myocarditis, resulting in dilated cardiomyopathy. Dilated cardiomyopathy in humans can be caused by multiple factors including hereditary defects in the cytoskeletal protein dystrophin in Duchenne muscular dystrophy (DMD) patients). A heart that undergoes dilated cardiomyopathy shows unique enlargement of ventricles, and thinning of the ventricular wall that may lead to heart failure. In addition to the genetic defects in dystrophin or other cytoskeletal proteins, a subset of dilated cardiomyopathy is linked to enteroviral infection in the heart, especially coxsackievirus B. Enterovirus infections are responsible for about 30% of the cases of acquired dilated cardiomyopathy in humans.
"Hepatitis C" (originally "non-A non-B hepatitis") is caused by hepatitis C virus (HCV), an RNA virus that is a member of the Flaviviridae family. HCV can be transmitted through contact with blood (including through sexual contact if the two parties' blood is mixed) and can also cross the placenta. Hepatitis C usually leads to chronic hepatitis, culminating in cirrhosis in some people. It usually remains asymptomatic for decades. Patients with hepatitis C are susceptible to severe hepatitis if they contract either hepatitis A or B, so all persons with hepatitis C should be immunized against hepatitis A and hepatitis B if they are not already immune, and avoid alcohol. HCV viral levels can be reduced to undetectable levels by a combination of interferon and the antiviral drug ribavirin. The genotype of the virus is the primary determinant of the rate of response to this treatment regimen, with genotype 1 being the most resistant.
Hepatitis C is the most common chronic blood-borne infection in the United States.
Viral cardiomyopathy occurs when viral infections cause myocarditis with a resulting thickening of the myocardium and dilation of the ventricles. These viruses include Coxsackie B and adenovirus, echoviruses, influenza H1N1, Epstein-Barr virus, rubella (German measles virus), varicella (chickenpox virus), mumps, measles, parvoviruses, yellow fever, dengue fever, polio, rabies and the viruses that cause hepatitis A and C.