Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Atrial fibrillation increases the risk of heart failure by 11 per 1000, kidney problems by 6 per 1000, death by 4 per 1000, stroke by 3 per 1000, and coronary heart disease by 1 per 1000. Women have a worse outcome overall than men. Evidence increasingly suggests that atrial fibrillation is independently associated with a higher risk of developing dementia.
As an overall medical condition PVCs are normally not very harmful to patients that experience them, but frequent PVCs may put patients at increased risk of developing arrhythmias or cardiomyopathy, which can greatly impact the functioning of the heart over the span of that patient's life. On a more serious and severe scale, frequent PVCs can accompany underlying heart disease and lead to chaotic, dangerous heart rhythms and possibly sudden cardiac death.
Asymptomatic patients that do not have heart disease have long-term prognoses very similar to the general population, but asymptomatic patients that have ejection fractions greater than 40% have a 3.5% incidence of sustained ventricular tachycardia or cardiac arrest. One drawback comes from emerging data that suggests very frequent ventricular ectopy may be associated with cardiomyopathy through a mechanism thought to be similar to that of chronic right ventricular pacing associated cardiomyopathy. Patients that have underlying chronic structural heart disease and complex ectopy, mortality is significantly increased.
In meta-analysis of 11 studies, people with frequent PVC (≥1 time during a standard electrocardiographic recording or ≥30 times over a 1-hour recording) had risk of cardiac death 2 times higher than persons without frequent PVC. Although most studies made attempts to exclude high-risk subjects, such as those with histories of cardiovascular disease, they did not test participants for underlying structural heart disease.
In a study of 239 people with frequent PVCs (>1000 beats/day) and without structural heart disease (i.e. in the presence of normal heart function) there were no serious cardiac events through 5.6 years on average, but there was correlation between PVC prevalence and decrease of ejection fraction and increase of left ventricular diastolic dimension. In this study absence of heart of disease was excluded by echocardiography, cardiac magnetic resonance imaging in 63 persons and Holter monitoring.
Another study has suggested that in the absence of structural heart disease even frequent (> 60/h or 1/min) and complex PVCs are associated with a benign prognosis. It was study of 70 people followed by 6.5 years on average. Healthy status was confirmed by extensive noninvasive cardiologic examination, although cardiac catheterization of a subgroup disclosed serious coronary artery disease in 19%. Overall survival was better than expected.
On the other hand, the Framingham Heart Study reported that PVCs in apparently healthy people were associated with a twofold increase in the risk of all-cause mortality, myocardial infarction and cardiac death. In men with coronary heart disease and in women with or without coronary heart disease, complex or frequent arrhythmias were not associated with an increased risk. The at-risk people might have subclinical coronary disease. These Framingham results have been criticised for the lack of rigorous measures to exclude the potential confounder of underlying heart disease.
In the ARIC study of 14,783 people followed for 15 to 17 years those with detected PVC during 2 minute ECG, and without hypertension or diabetes on the beginning, had risk of stroke increased by 109%. Hypertension or diabetes, both risk factors for stroke, did not change significantly risk of stroke for people with PVC. It is possible that PVCs identified those at risk of stroke with blood pressure and impaired glucose tolerance on a continuum of risk below conventional diagnostic thresholds for hypertension and diabetes. Those in ARIC study with any PVC had risk of heart failure increased by 63% and were >2 times as likely to die due to coronary heart disease (CHD). Risk was also higher for people with or without baseline CHD.
In the Niigata study of 63,386 people with 10-year follow-up period those with PVC during a 10-second recording had risk of atrial fibrillation increased nearly 3 times independently from risk factors: age, male sex, body mass index, hypertension, systolic and diastolic blood pressure, and diabetes.
Reducing frequent PVC (>20%) by antiarrhythmic drugs or by catheter ablation significantly improves heart performance.
Recent studies have shown that those subjects who have an extremely high occurrence of PVCs (several thousand a day) can develop dilated cardiomyopathy. In these cases, if the PVCs are reduced or removed (for example, via ablation therapy) the cardiomyopathy usually regresses.
Also, PVCs can permanently cease without any treatment, in a material percentage of cases.
Determining the risk of an embolism causing a stroke is important for guiding the use of anticoagulants. The most accurate clinical prediction rules are:
- CHADS2
- CHA2DS2-VASc
Both the CHADS2 and the CHA2DS2-VASc score predict future stroke risk in people with a-fib with CHA2DS2-VASc being more accurate. Some that had a CHADS2 score of 0 had a CHA2DS2-VASc score of 3, with a 3.2% annual risk of stroke. Thus a CHA2DS2-VASc score of 0 is considered very low risk.
The following stimulants, conditions and triggers may increase your risk of the more frequent occurrence of premature ventricular contractions:
- Caffeine, tobacco and alcohol
- Exercise
- High blood pressure (hypertension)
- Anxiety
- Underlying heart disease, including congenital heart disease, coronary artery disease, heart attack, heart failure and a weakened heart muscle (cardiomyopathy)
- African American ethnicity- increased the risk of PVCs by 30% in comparison with the risk in white individuals
- Male sex
- Lower serum magnesium or potassium levels
- Faster sinus rates
- A bundle-branch block on 12-lead ECG
- Hypomagnesemia
- Hypokalemia
Sudden cardiac arrest is the leading cause of death in the industrialised world. It exacts a significant mortality with approximately 70,000 to 90,000 sudden cardiac deaths each year in the United Kingdom, and survival rates are only 2%. The majority of these deaths are due to ventricular fibrillation secondary to myocardial infarction, or "heart attack". During ventricular fibrillation, cardiac output drops to zero, and, unless remedied promptly, death usually ensues within minutes.
The true incidence of TIC is unclear. Some studies have noted the incidence of TIC in adults with irregular heart rhythms to range from 8% to 34%. Other studies of patients with atrial fibrillation and left ventricular dysfunction estimate that 25-50% of these study participants have some degree of TIC. TIC has been reported in all age groups.
Arrhythmia may be classified by rate (tachycardia, bradycardia), mechanism (automaticity, re-entry, triggered) or duration (isolated premature beats; couplets; runs, that is 3 or more beats; non-sustained= less than 30 seconds or sustained= over 30 seconds).
It is also appropriate to classify by site of origin:
Congenital heart defects are structural or electrical pathway problems in the heart that are present at birth. Anyone can be affected with this because overall health does not play a role in the problem. Problems with the electrical pathway of the heart can cause very fast or even deadly arrhythmias. Wolff–Parkinson–White syndrome is due to an extra pathway in the heart that is made up of electrical muscle tissue. This tissue allows the electrical impulse, which stimulates the heartbeat, to happen very rapidly. Right Ventricular outflow tract Tachycardia is the most common type of ventricular tachycardia in otherwise healthy individuals. This defect is due to an electrical node in the right ventricle just before the pulmonary artery. When the node is stimulated, the patient will go into ventricular tachycardia, which does not allow the heart to fill with blood before beating again. Long QT Syndrome is another complex problem in the heart and has been labeled as an independent factor in mortality. There are multiple methods of treatment for these including cardiac ablations, medication treatment, or altering your lifestyle to have less stress and exercise. It is possible to live a full and happy life with these conditions.
The overall chance of survival among those who have cardiac arrest outside hospital is 10%. Among those who have an out-of-hospital cardiac arrest, 70% occur at home and have a survival rate of 6%. For those who have an in-hospital cardiac arrest, survival rate is estimated to be 24%. Among children rates of survival is 3 to 16% in North America. For in hospital cardiac arrest survival to discharge is around 22% with many having a good neurological outcome.
Prognosis is typically assessed 72 hours or more after cardiac arrest. Rates of survival are better in those who someone saw collapse, got bystander CPR, or had either ventricular tachycardia or ventricular fibrillation when assessed. Survival among those with Vfib or Vtach is 15 to 23%. Women are more likely to survive cardiac arrest and leave hospital than men.
A 1997 review found rates of survival to discharge of 14% although different studies varied from 0-28%. In those over the age of 70 who have a cardiac arrest while in hospital, survival to hospital discharge is less than 20%. How well these individuals are able to manage after leaving hospital is not clear.
A study of survival rates from out-of-hospital cardiac arrest found that 14.6% of those who had received resuscitation by ambulance staff survived as far as admission to hospital. Of these, 59% died during admission, half of these within the first 24 hours, while 46% survived until discharge from hospital. This reflects an overall survival following cardiac arrest of 6.8%. Of these 89% had normal brain function or mild neurological disability, 8.5% had moderate impairment, and 2% had major neurological disability. Of those who were discharged from hospital, 70% were still alive four years later.
Knowledge that TdP may occur in patients taking certain prescription drugs has been both a major liability and reason for retirement of these medications from the marketplace. Examples of compounds linked to clinical observations of TdP include amiodarone, fluoroquinolones, methadone, lithium, chloroquine, erythromycin, amphetamine, ephedrine, pseudoephedrine, methylphenidate, and phenothiazines. It has also been shown as a side effect of certain anti-arrhythmic medications, such as sotalol, procainamide, and quinidine. The gastrokinetic drug cisapride (Propulsid) was withdrawn from the US market in 2000 after it was linked to deaths caused by long QT syndrome-induced torsades de pointes. In many cases, this effect can be directly linked to QT prolongation mediated predominantly by inhibition of the hERG channel.
In September 2011 (subsequently updated in March 2012 and February 2013), the FDA issued a warning concerning increased incidence of QT prolongation in patients prescribed doses of the antidepressant Celexa (citalopram) above 40 mg per day, considered the maximum allowable dosage, thereby increasing the risk of Torsades. However, a study, "Evaluation of the FDA Warning Against Prescribing Citalopram at Doses Exceeding 40 mg," reported no increased risk of abnormal arrhythmias, thus questioning the validity of the FDA's warning.
Ventricular tachycardia can occur due to coronary heart disease, aortic stenosis, cardiomyopathy, electrolyte problems (e.g., low blood levels of magnesium or potassium), inherited channelopathies (e.g., long-QT syndrome), catecholaminergic polymorphic ventricular tachycardia, arrhythmogenic right ventricular dysplasia, or a heart attack.
Marine-derived omega-3 polyunsaturated fatty acids (PUFAs) has been promoted for the prevention of sudden cardiac death due to its postulated ability to lower triglyceride levels, prevent arrhythmias, decrease platelet aggregation, and lower blood pressure. However, according to a recent systematic review, omega-3 PUFA supplementation are not being associated with a lower risk of sudden cardiac death.
Some causes of tachycardia include:
- Adrenergic storm
- Alcohol
- Amphetamine
- Anaemia
- Antiarrhythmic agents
- Anxiety
- Atrial fibrillation
- Atrial flutter
- Atrial tachycardia
- AV nodal reentrant tachycardia
- Brugada syndrome
- Caffeine
- Cocaine
- Exercise
- Fear
- Fever
- Hypoglycemia
- Hypovolemia
- Hyperthyroidism
- Hyperventilation
- Infection
- Junctional tachycardia
- Methamphetamine
- Multifocal atrial tachycardia
- Nicotine
- Pacemaker mediated
- Pain
- Pheochromocytoma
- Sinus tachycardia
- Tricyclic antidepressants
- Wolff–Parkinson–White syndrome
The following is a list of factors associated with an increased tendency towards developing torsades de pointes:
- Hypokalemia (low blood potassium)
- Hypomagnesemia (low blood magnesium)
- Hypocalcemia (low blood calcium)
- Bradycardia (slow heartbeat)
- Heart failure
- Left ventricular hypertrophy
- Hypothermia
- Subarachnoid hemorrhage
- Hypothyroidism
Rearrest may reduce the likelihood of survival when compared to patients who have had just one episode of cardiac arrest. Overall resuscitation rates have been estimated to be about 34%, however survival to hospital discharge rates are as low as 7%. This phenomenon may be contributed to rearrest.
In otherwise healthy patients, occasional premature atrial contractions are a common and normal finding and do not indicate any particular health risk. Rarely, in patients with other underlying structural heart problems, PACs can trigger a more serious arrhythmia such as atrial flutter or atrial fibrillation. In otherwise healthy people, PACs usually disappear with adolescence.
A recent study by Salcido et al. (2010) ascertained rearrest in all initial and rearrest rhythms treated by any level of Emergency Medical Service (EMS), finding a rearrest rate of 36% and a lower but not significantly different rate of survival to hospital discharge in cases with rearrest compared to those without rearrest.
Therapy may be directed either at terminating an episode of the abnormal heart rhythm or at reducing the risk of another VT episode. The treatment for stable VT is tailored to the specific person, with regard to how well the individual tolerates episodes of ventricular tachycardia, how frequently episodes occur, their comorbidities, and their wishes. Individuals suffering from pulseless VT or unstable VT are hemodynamically compromised and require immediate electric cardioversion to shock them out of the VT rhythm.
Ventricular fibrillation has been described as "chaotic asynchronous fractionated activity of the heart" (Moe et al. 1964). A more complete definition is that ventricular fibrillation is a "turbulent, disorganized electrical activity of the heart in such a way that the recorded electrocardiographic deflections continuously change in shape, magnitude and direction".
Ventricular fibrillation most commonly occurs within diseased hearts, and, in the vast majority of cases, is a manifestation of underlying ischemic heart disease. Ventricular fibrillation is also seen in those with cardiomyopathy, myocarditis, and other heart pathologies. In addition, it is seen with electrolyte imbalance, overdoses of cardiotoxic drugs, and following near drowning or major trauma. It is also notable that ventricular fibrillation occurs where there is no discernible heart pathology or other evident cause, the so-called idiopathic ventricular fibrillation.
Idiopathic ventricular fibrillation occurs with a reputed incidence of approximately 1% of all cases of out-of-hospital arrest, as well as 3%-9% of the cases of ventricular fibrillation unrelated to myocardial infarction, and 14% of all ventricular fibrillation resuscitations in patients under the age of 40. It follows then that, on the basis of the fact that ventricular fibrillation itself is common, idiopathic ventricular fibrillation accounts for an appreciable mortality. Recently described syndromes such as the Brugada Syndrome may give clues to the underlying mechanism of ventricular arrhythmias. In the Brugada syndrome, changes may be found in the resting ECG with evidence of right bundle branch block (RBBB) and ST elevation in the chest leads V1-V3, with an underlying propensity to sudden cardiac death.
The relevance of this is that theories of the underlying pathophysiology and electrophysiology must account for the occurrence of fibrillation in the apparent "healthy" heart. It is evident that there are mechanisms at work that we do not fully appreciate and understand. Investigators are exploring new techniques of detecting and understanding the underlying mechanisms of sudden cardiac death in these patients without pathological evidence of underlying heart disease.
Familial conditions that predispose individuals to developing ventricular fibrillation and sudden cardiac death are often the result of gene mutations that affect cellular transmembrane ion channels. For example, in Brugada Syndrome, sodium channels are affected. In certain forms of long QT syndrome, the potassium inward rectifier channel is affected.
Hypertension, or abnormally high blood pressure, often signifies an elevated level of both psychological and physiological stress. Often, hypertension goes hand in hand with various atrial fibrillations including premature atrial contractions (PACs). Additional factors that may contribute to spontaneous premature atrial contractions could be:
- Increased age
- Abnormal body height
- History of cardiovascular disease (CV)
- Abnormal ANP levels
- Elevated cholesterol
Ouabain infusion decreases ventricular escape time and increases ventricular escape rhythm. However, a high dose of ouabain can lead to ventricular tachycardia.
Athlete's heart is not dangerous for athletes (though if a nonathlete has symptoms of bradycardia, cardiomegaly, and cardiac hypertrophy, another illness may be present). Athlete's heart is not the cause of sudden cardiac death during or shortly after a workout, which mainly occurs due to hypertrophic cardiomyopathy, a genetic disorder.
No treatment is required for people with athletic heart syndrome; it does not pose any physical threats to the athlete, and despite some theoretical concerns that the ventricular remodeling might conceivably predispose for serious arrhythmias, no evidence has been found of any increased risk of long-term events. Athletes should see a physician and receive a clearance to be sure their symptoms are due to athlete’s heart and not another heart disease, such as cardiomyopathy. If the athlete is uncomfortable with having athlete's heart or if a differential diagnosis is difficult, deconditioning from exercise for a period of three months allows the heart to return to its regular size. However, one long-term study of elite-trained athletes found that dilation of the left ventricle was only partially reversible after a long period of deconditioning. This deconditioning is often met with resistance to the accompanying lifestyle changes. The real risk attached to athlete's heart is if athletes or nonathletes simply assume they have the condition, instead of making sure they do not have a life-threatening heart illness.
Accelerated idioventricular rhythm is a ventricular rhythm with a rate of between 40 and 120 beats per minute. Idioventricular means “relating to or affecting the cardiac ventricle alone” and refers to any ectopic ventricular arrhythmia. Accelerated idioventricular arrhythmias are distinguished from ventricular rhythms with rates less than 40 (ventricular escape) and those faster than 120 (ventricular tachycardia). Though some other references limit to between 60 and 100 beats per minute. It is also referred to as AIVR and "slow ventricular tachycardia."
It can be present at birth. However, it is more commonly associated with reperfusion after myocardial injury.
Supraventricular tachycardia (SVT) is an abnormally fast heart rhythm arising from improper electrical activity in the upper part of the heart. There are four main types: atrial fibrillation, paroxysmal supraventricular tachycardia (PSVT), atrial flutter, and Wolff–Parkinson–White syndrome. Symptoms may include palpitations, feeling faint, sweating, shortness of breath, or chest pain.
They start from either the atria or atrioventricular node. They are generally due to one of two mechanisms: re-entry or increased automaticity. The other type of fast heart rhythm is ventricular arrhythmias—rapid rhythms that start within the ventricle. Diagnosis is typically by electrocardiogram (ECG), holter monitor, or event monitor. Blood tests may be done to rule out specific underlying causes such as hyperthyroidism or electrolyte abnormalities.
Specific treatments depend on the type of SVT. They can include medications, medical procedures, or surgery. Vagal maneuvers or a procedure known as catheter ablation may be effective in certain types. For atrial fibrillation calcium channel blockers or beta blockers may be used. Long term some people benefit from blood thinners such as aspirin or warfarin. Atrial fibrillation affects about 25 per 1000 people, paroxysmal supraventricular tachycardia 2.3 per 1000, Wolff-Parkinson-White syndrome 2 per 1000, and atrial flutter 0.8 per 1000.
In the human heart the sinoatrial node is located at the top of the right atrium. The sinoatrial node is the first area of the heart to depolarize and to generate the action potential that leads to depolarization of the rest of the myocardium. Sinoatrial depolarization and subsequent propagation of the electrical impulse suppress the action of the lower natural pacemakers of the heart, which have slower intrinsic rates.
The accelerated idioventricular rhythm occurs when depolarization rate of a normally suppressed focus increases to above that of the "higher order" focuses (the sinoatrial node and the atrioventricular node). This most commonly occurs in the setting of a sinus bradycardia.
Accelerated idioventricular rhythm is the most common reperfusion arrhythmia in humans. However, ventricular tachycardia and ventricular fibrillation remain the most important causes of sudden death following spontaneous restoration of antegrade flow. Prior to the modern practice of percutaneous coronary intervention for acute coronary syndrome, pharmacologic thrombolysis was more common and accelerated idioventricular rhythms were used as a sign of successful reperfusion. It is considered a benign arrhythmia that does not require intervention, though atrioventricular dyssynchrony can cause hemodynamic instability, which can be treated through overdrive pacing or atropine.