Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Velvet Blight is a disease that affects the stems, branches, leaves, fruits or trunks of plants and trees. This disease is primarily caused by three fungal species from the genus "Septobasidium": "S. bogoriense", "S. pilosum" and "S. theae".
It is known to affect mainly tea plants ("Thea" genus).
The most studied of these species is "S. bogoriense", most notably due to the work of Ernst Albert Gäumann. "S. bogoriense" is named after the Herbarium Bogoriense (Bogor, West Java, Indonesia) which is the place where it was first identified on the bark of an unspecified tree and named by E. Nyman on June 3, 1898. This species was also listed in Otto Warburg's Monsunia in 1900.
Grey leaf spot (GLS) is a foliar fungal disease that affects maize, also known as corn. There are two fungal pathogens that cause GLS, which are "Cercospora zeae-maydis" and "Cercospora zeina" . Symptoms seen on corn include leaf lesions, discoloration (chlorosis), and foliar blight. The fungus survives in debris of topsoil and infects healthy crop via asexual spores called conidia. Environmental conditions that best suit infection and growth include moist, humid, and warm climates. Poor airflow, low sunlight, overcrowding, improper soil nutrient and irrigation management, and poor soil drainage can all contribute to the propagation of the disease. Management techniques include crop resistance, crop rotation, residue management, use of fungicides, and weed control. The purpose of disease management is to prevent the amount of secondary disease cycles as well as to protect leaf area from damage prior to grain formation. Corn grey leaf spot is an important disease of corn production in the United States, economically significant throughout the Midwest and Mid-Atlantic regions. However, it is also prevalent in Africa, Central America, China, Europe, India, Mexico, the Philippines, northern South America, and Southeast Asia. The teleomorph (sexual phase) of "Cercospora Zeae-Maydis" is assumed to be "Mycosphaerella sp."
Ascochyta blights occur throughout the world and can be of significant economic importance. Three fungi contribute to the ascochyta blight disease complex of pea ("Pisum sativum"). "Ascochyta pinodes" (sexual stage: "Mycosphaerella pinodes") causes Mycosphaerella blight. "Ascochyta pinodella" (synonym: "Phoma medicaginis" var. "pinodella") causes Ascochyta foot rot, and "Ascochyta pisi" causes Ascochyta blight and pod spot. Of the three fungi, "Ascochyta pinodes" is of the most importance. These diseases are conducive under wet and humid conditions and can cause a yield loss of up to fifty percent if left uncontrolled. The best method to control ascochyta blights of pea is to reduce the amount of primary inoculum through sanitation, crop-rotation, and altering the sowing date. Other methods—chemical control, biological control, and development of resistant varieties—may also be used to effectively control ascochyta diseases.
Panama disease is a plant disease of the roots of banana plants. It is a type of Fusarium wilt, caused by the fungal pathogen "Fusarium oxysporum f. sp. cubense" (Foc). The pathogen is resistant to fungicide and cannot be controlled chemically.
During the 1950s, Panama disease wiped out most commercial Gros Michel banana production. The Gros Michel banana was the dominant cultivar of bananas, and the blight inflicted enormous costs and forced producers to switch to other, disease-resistant cultivars. New strains of Panama disease currently threaten the production of today's most popular cultivar, Cavendish.
This disease is mainly found in tropical climates in Southern Asia, however some scattering exists:
Shot hole disease (also called Coryneum blight) is a serious fungal disease that creates BB-sized holes in leaves, rough areas on fruit, and concentric lesions on branches. The pathogen that causes shot hole disease is "Wilsonomyces carpophilus".
Blight refers to a specific symptom affecting plants in response to infection by a pathogenic organism. It is a rapid and complete chlorosis, browning, then death of plant tissues such as leaves, branches, twigs, or floral organs. Accordingly, many diseases that primarily exhibit this symptom are called blights. Several notable examples are:
- Late blight of potato, caused by the water mold "Phytophthora infestans" (Mont.) de Bary, the disease which led to the Great Irish Famine
- Southern corn leaf blight, caused by the fungus "Cochliobolus heterostrophus" (Drechs.) Drechs, anamorph "Bipolaris maydis" (Nisikado & Miyake) Shoemaker, incited a severe loss of corn in the United States in 1970.
- Chestnut blight, caused by the fungus "Cryphonectria parasitica" (Murrill) Barr, has nearly completely eradicated mature American chestnuts in North America.
- Fire blight of pome fruits, caused by the bacterium "Erwinia amylovora" (Burrill) Winslow "et al.", is the most severe disease of pear and also is found in apple and raspberry, among others.
- Bacterial leaf blight of rice, caused by the bacterium "Xanthomonas oryzae" (Uyeda & Ishiyama) Dowson.
- Early blight of potato and tomato, caused by species of the ubiquitous fungal genus "Alternaria"
- Leaf blight of the grasses
On leaf tissue, symptoms of blight are the initial appearance of lesions which rapidly engulf surrounding tissue. However, leaf spot may, in advanced stages, expand to kill entire areas of leaf tissue and thus exhibit blight symptoms.
Blights are often named after their causative agent, for example Colletotrichum blight is named after the fungi "Colletotrichum capsici", and Phytophthora blight is named after the water mold "Phytophthora parasitica".
Snow mold is a type of fungus and a turf disease that damages or kills grass after snow melts, typically in late winter. Its damage is usually concentrated in circles three to twelve inches in diameter, although yards may have many of these circles, sometimes to the point at which it becomes hard to differentiate between different circles. Snow mold comes in two varieties: pink or gray. While it can affect all types of grasses, Kentucky bluegrass and fescue lawns are least affected by snow mold.
"W. carpophilus" can remain viable for several months and spores are often airborne. Since the fungi thrive in wet conditions, overhead watering should be avoided. Remove and dispose of any infected buds, leaves, fruit and twigs. In fall, fixed copper or Bordeaux mixture can be applied.
The amount of initial inoculum will be reduced when a crop other than corn is planted for ≥2 years in that given area; meanwhile proper tillage methods are carried out. Clean plowing and 1-year crop rotation in the absence of corn allows for greater reductions of the disease as well. Note that conventional tilling can reduce disease but can lead to greater soil erosion.
Gray snow mold ("Typhula" spp. or Typhula blight) is the less damaging form of snow mold. While its damage may appear widespread, it typically does little damage to the grass itself, only to the blades. Unlike most plant pathogens, it is able to survive throughout hot summer months as sclerotia under the ground or in plant debris. Typhula blight is commonly found in United States in the Great Lakes region and anywhere with cold winter temperatures and persistent snow fall.
Two external symptoms help characterize Panama disease of banana:
- Yellow leaf syndrome, the yellowing of the border of the leaves which eventually leads to bending of the petiole.
- Green leaf syndrome, which occurs in certain cultivars, marked by the persistence of the green color of the leaves followed by the bending of the petiole as in yellow leaf syndrome. Internally, the disease is characterized by vascular discoloration. This begins in the roots and rhizomes with a yellowing that proceeds to a red or brown color in the pseudostem.
These symptoms often get confused with the symptoms of bacterial wilt of banana, but there are ways to differentiate between the two diseases:
- Fusarium wilt proceeds from older to younger leaves, but bacterial wilt is the opposite.
- Fusarium wilt has no symptoms on the growing buds or suckers, no exudates visible within the plant, and no symptoms in the fruit. Bacterial wilt can be characterized by distorted or necrotic buds, bacterial ooze within the plant, and fruit rot and necrosis.
Once a banana plant is infected, it will continue to grow and any new leaves will be pale in color. Recovery is rare, but if it does occur any new emerging suckers will already be infected and can propagate disease if planted.
"Fusarium oxysporum f. sp. cubense" (Foc) is most prominent in banana and plantain, but some other similar relatives are also susceptible to infection. Different races of the disease are used to classify different major hosts affected by Foc. Race 1 was the initial outbreak which destroyed much of the world's Gros Michel bananas. Cavendish bananas are resistant to race 1, but tropical race 4 (or subtropical race 4) is the classification for Foc which affects Cavendish. Race 2 affects a cooking and dessert banana, Bluggoe.
Disease cures are almost always more expensive and less effective than simple prevention measures. Often precautions involve maintaining a stable aquarium that is adjusted for the specific species of fish that are kept and not over-crowding a tank or over-feeding the fish. Common preventive strategies include avoiding the introduction of infected fish, invertebrates or plants by quarantining new additions before adding them to an established tank, and discarding water from external sources rather than mixing it with clean water. Similarly, foods for herbivorous fish such as lettuce or cucumbers should be washed before being placed in the tank. Containers that do not have water filters or pumps to circulate water can also increase stress to fish. Other stresses on fish and tanks can include certain chemicals, soaps and detergents, and impacts to tank walls causing shock waves that can damage fish.
Certain techniques can be used to determine which pathogen is causing disease. One standard technique for distinguishing strains is microscopy. Under a microscope, "M. pinodes" can be diagnosed by the presence of pseudothecia. "P pinodella" can be diagnosed by the size of conidia produced. "P. pinodella" produces conidia that are smaller than the conidia of "M. pinodes" or "A. pisi". "A. pisi" can be diagnosed by the color of the conidia. In comparison to the light colored, buff spore masses of "M. pinodes" and "P. pinodella" produced on oatmeal agar, "A. pisi" spores masses are carrot red.
Other techniques for diagnosis involve serological assays, isoenzyme analysis, restriction fragment length polymorphisms (RFLPs), random amplified polymorphic DNA (RAPD) assays, and by using monoclonal antibodies.
Velvet (in an aquarium environment) is usually spread by contaminated tanks, fish, and tools (such as nets or testing supplies). There are also rare reports of frozen live foods (such as bloodworms) containing dormant forms of the species. Frequently, however, the parasite is endemic to a fish, and only causes a noticeable "outbreak" after the fish's immune system is compromised for some other reason. The disease is highly contagious and can prove fatal to fish.
The single-celled parasite's life cycle can be divided into three major phases. First, as a tomont, the parasite rests at the water's floor and divides into as many as 256 tomites. Second, these juvenile, motile tomites swim about in search of a fish host, meanwhile using photosynthesis to grow, and to fuel their search. Finally, the adolescent tomite finds and enters the slime coat of a host fish, dissolving and consuming the host's cells, and needing only three days to reach full maturity before detaching to become a tomont once more.
In some cases the causes of an infection or disease will be obvious (such as fin rot), though in other cases it may be due to water conditions, requiring special testing equipment and chemicals to appropriately adjust the water. Isolating diseased fish can help prevent the spread of infection to healthy fish in the tank. This also allows the use of chemicals or drugs which may damage the nitrogen cycle, plants or chemical filtration of a properly-functioning tank. Other alternatives include short baths in a bucket that contains the treated water. Salt baths can be used as an antiseptic and fungicide, and will not damage beneficial bacteria, though ordinary table salt may contain additives which can harm fish. Alternatives include aquarium salt, Kosher salt or rock salt. Gradually raising the temperature of the tank may kill certain parasites, though some diseased fish may be harmed and certain species can not tolerate high temperatures. Aeration is necessary since less oxygen is dissolved in warm water.
There are a number of effective treatments for many stains of bacterial infections. Three of the most common are tetracycline, penicillin and naladixic acid. Salt baths are another effective treatment.
Bed bug bites are caused by bed bugs primarily of two species "Cimex lectularius" (the common bed bug) and "Cimex hemipterus". Infestation is rarely due to a lack of hygiene. These insects feed exclusively on blood and may survive a year without eating. They are attracted by body warmth and carbon dioxide. Transfer to new places is usually in the personal effects of the human they feed upon.
Dwellings can become infested with bed bugs in a variety of ways, such as:
- Bugs and eggs inadvertently brought in from other infested dwellings on a visiting person's clothing or luggage;
- Infested items (such as furniture especially beds or couches, clothing, or backpacks) brought in a home or business;
- Nearby dwellings or infested items, if easy routes are available for travel, e.g. through ducts or false ceilings;
- Wild animals (such as bats or birds) that may also harbour bed bugs or related species such as the bat bug;
- People visiting an infested area (e.g. dwelling, means of transport, entertainment venue, or lodging) and carrying the bugs to another area on their clothing, luggage, or bodies. Bedbugs are increasingly found in air travel.
- Though bed bugs will feed on pets, they do not live or travel on the skin of their hosts, and pets are not believed a factor in their spread.
Bed bugs occur around the world. Rates of infestations in developed countries, while decreasing from the 1930s to the 1980s, have increased dramatically since the 1980s. Previous to this they were common in the developing world but rare in the developed world. The increase in the developed world may have been caused by increased international travel, resistance to insecticides, and the use of new pest-control methods that do not affect bed bugs. The fall in bed bug populations after the 1930s in the developed world is believed to be partly due to the usage of DDT to kill cockroaches. The invention of the vacuum cleaner and simplification of furniture design may have also played a role. Others believe it might simply be the cyclical nature of the organism.
Dark-purple or black grain kernels, known as ergot bodies, can be identifiable in the heads of cereal or grass just before harvest. In most plants the ergot bodies are larger than normal grain kernels, but can be smaller if the grain is a type of wheat. A larger separation between the bodies and the grain kernels show the removal of ergot bodies during grain cleaning.
Removal of ergot bodies is done by placing the yield in a brine solution; the ergot bodies float while the healthy grains sink. Infested fields need to be deep plowed; ergot cannot germinate if buried more than one inch in soil and therefore won't release its spores into the air. Rotating crops using non-susceptible plants helps reduce infestations since ergot spores only live one year. Crop rotation and deep tillage, such as deep moldboard ploughing, are important components in managing ergot, as many cereal crops in the 21st Century are sown with a "no-till" practice (new crops are seeded directly into the stubble from the previous crop to reduce soil erosion). Wild and escaped grasses and pastures can be mowed before they flower to help limit the spread of ergot.
Chemical controls can also be used, but are not considered economical especially in commercial operations, and germination of ergot spores can still occur under favorable conditions even with the use of such controls.
All fish carry pathogens and parasites. Usually this is at some cost to the fish. If the cost is sufficiently high, then the impacts can be characterised as a disease. However disease in fish is not understood well. What is known about fish disease often relates to aquaria fish, and more recently, to farmed fish.
Disease is a prime agent affecting fish mortality, especially when fish are young. Fish can limit the impacts of pathogens and parasites with behavioural or biochemical means, and such fish have reproductive advantages. Interacting factors result in low grade infection becoming fatal diseases. In particular, things that causes stress, such as natural droughts or pollution or predators, can precipitate outbreak of disease.
Disease can also be particularly problematic when pathogens and parasites carried by introduced species affect native species. An introduced species may find invading easier if potential predators and competitors have been decimated by disease.
Pathogens which can cause fish diseases comprise:
- viral infections, such as esocid lymphosarcoma found in "Esox" species.
- bacterial infections, such as "Pseudomonas fluorescens" leading to fin rot and fish dropsy
- fungal infections
- water mould infections, such as "Saprolegnia" sp.
- metazoan parasites, such as copepods
- unicellular parasites, such as "Ichthyophthirius multifiliis" leading to ich
- Certain parasites like Helminths for example "Eustrongylides"
Like humans and other animals, fish suffer from diseases and parasites. Fish defences against disease are specific and non-specific. Non-specific defences include skin and scales, as well as the mucus layer secreted by the epidermis that traps microorganisms and inhibits their growth. If pathogens breach these defences, fish can develop inflammatory responses that increase the flow of blood to infected areas and deliver white blood cells that attempt to destroy the pathogens.
Specific defences are specialised responses to particular pathogens recognised by the fish's body, that is adaptative immune responses. In recent years, vaccines have become widely used in aquaculture and ornamental fish, for example vaccines for furunculosis in farmed salmon and koi herpes virus in koi.
Some commercially important fish diseases are VHS, ich and whirling disease.
Ultraviolet (UV) radiation is implicated in cattle with no pigmentation around the eyelids and cattle with prominently placed eyes. Exudate from the sun-burnt skin around the eyes can contain bacteria and attracts flies. UV light also directly damages the corneal epithelium, leading to a breakdown in host innate immunity.
Dust, dried-up plants, tall vegetation, and oversized or incorrectly placed ear tags may cause mechanical damage to the eye and facilitate bacterial colonization.
The disease may be complicated by concurrent infection with viruses such as infectious bovine rhinotracheitis virus (bovine herpesvirus 1) or adenovirus, bacteria such as "Mycoplasma boviculi" or "Listeria monocytogenes", or infestation by "Thelazia", a nematode.
Vitamin A deficiency is also implicated.
IBK is most prevalent in summer and early autumn.
A recent Meat and Livestock Australia report "estimates that the disease costs Australian beef producers AU$23.5 million annually in lost production and treatment costs".
"Moraxella bovis" is a Gram-negative rod-shaped aerobe. This bacterium is an obligate intracellular parasite of the mucous membranes, and can usually be isolated from the respiratory tract, vagina, and conjunctiva of healthy animals. Transmission of IBK is through direct contact with mucous membranes and their secretions and indirect contact where flies act as a mechanical vector. Asymptomatic carrier animals can also be source of infection.