Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The cause of Primrose syndrome is currently unknown. This condition is extremely rare and seems to spontaneously occur, regardless of family history.
In the case studied by Dalai et al. in 2010, it was found that an abnormally high amount of calcitonin, a hormone secreted by the thyroid gland to stabilize blood calcium levels, was present in the blood serum. This suggests that the thyroid gland is releasing an abnormal amount of calcitonin, resulting in the disruption of calcium level homeostasis. No molecular cause was found, but an expanded microarray analysis of the patient found a 225.5 kb deletion on chromosome 11p between rs12275693 and rs1442927. Whether or not this deletion is related to the syndrome or is a harmless mutation is unknown. The deletion was not present in the patient's mother's DNA sample, but the father's DNA was unavailable.
Respiratory complications are often cause of death in early infancy.
YVS has been described relatively recently in the 1980s and since then less than 15 cases have been reported around the world. Many of the infants did not survive beyond one year of age.
Marshall–Smith syndrome is not to be confused with:
- Marshall syndrome (aka.Periodic fever, aphthous stomatitis, pharyngitis and adenitis (PFAPA syndrome, see also: Periodic fever syndrome)
- Sotos (like) syndrome
- Weaver-Smith syndrome (WSS)
Since tetrasomy 9p is not usually inherited, the risk of a couple having a second child with the disorder is minimal. While patients often do not survive to reproductive age, those who do may or may not be fertile. The risk of a patient's child inheriting the disorder is largely dependent on the details of the individual's case.
Weissenbacher-Zweymüller syndrome affects males and females in the same numbers. About 30 cases have been reported in medical literature. This disorder can be underdiagnosed causing no true frequency in the population. Only 30 cases have been reported in medical literature.
Möbius syndrome results from the underdevelopment of the VI and VII cranial nerves. The VI cranial nerve controls lateral eye movement, and the VII cranial nerve controls facial expression.
The causes of Möbius syndrome are poorly understood. Möbius syndrome is thought to result from a vascular disruption (temporary loss of bloodflow) in the brain during prenatal development. There could be many reasons that a vascular disruption leading to Möbius syndrome might occur. Most cases do not appear to be genetic. However, genetic links have been found in a few families. Some maternal trauma may result in impaired or interrupted blood flow (ischemia) or lack of oxygen (hypoxia) to a developing fetus. Some cases are associated with reciprocal translocation between chromosomes or maternal illness. In the majority of cases of Möbius syndrome in which autosomal dominant inheritance is suspected, sixth and seventh cranial nerve paralysis (palsy) occurs without associated limb abnormalities.
The use of drugs and a traumatic pregnancy may also be linked to the development of Möbius syndrome. The use of the drugs misoprostol or thalidomide by women during pregnancy has been linked to the development of Möbius syndrome in some cases. Misoprostol is used to induce abortions in Brazil and Argentina as well as in the United States. Misoprostol abortions are successful 90% of the time, meaning that 10% of the time the pregnancy continues. Studies show that the use of misoprostal during pregnancy increases the risk of developing Möbius syndrome by a factor of 30. While this is a dramatic increase in risk, the incidence of Möbius syndrome without misoprostal use is estimated at one in 50000 to 100000 births (making the incidence of Möbius syndrome with misoprostol use, less than one in 1000 births). The use of cocaine (which also has vascular effects) has been implicated in Möbius syndrome.
Some researchers have suggested that the underlying problem of this disorder could be congenital hypoplasia or agenesis of the cranial nerve nuclei. Certain symptoms associated with Möbius syndrome may be caused by incomplete development of facial nerves, other cranial nerves, and other parts of the central nervous system.
Craniofrontonasal dysplasia is a very rare genetic condition. As such there is little information and no consensus in the published literature regarding the epidemiological statistics.
The incidence values that were reported ranged from 1:100,000 to 1:120,000.
The disorder can be associated with a number of psychological symptoms, anxiety, depression, social phobia, body image disorders, and patients may be subjected to discrimination, bullying and name calling especially when young. A multi-disciplinary team and parental support should include these issues.
This syndrome appears to be inherited in an autosomal dominant fashion.
Molecular analyses suggest that the causative mutations cause a truncation of the protein. These mutations result in the loss of PEST sequence in the protein. This loss is associated with a prolonged half life of the protein.
Mutations in Notch 3 were found to be associated with this syndrome.
Some people may have some mental slowness, but children with this condition often have good social skills. Some males may have problems with fertility.
TCS occurs in about one in 50,000 births in Europe. Worldwide, it is estimated to occur in one in 10,000 to one in 50,000 births.
The common symptoms in all reported cases of primrose syndrome include ossified pinnae, learning disabilities or mental retardation, hearing problems, movement disorders (ataxia, paralysis, and parkinsonism among others (likely due, in part, to calcification of the basal ganglia), a torus palatinus (a neoplasm on the mouth's hard palate), muscle atrophy, and distorted facial features. Other symptoms usually occur, different in each case, but it is unknown whether or not these symptoms are caused by the same disease.
Recent research has been focused on studying large series of cases of 3-M syndrome to allow scientists to obtain more information behind the genes involved in the development of this disorder. Knowing more about the underlying mechanism can reveal new possibilities for treatment and prevention of genetic disorders like 3-M syndrome.
- One study looks at 33 cases of 3M syndrome, 23 of these cases were identified as CUL7 mutations: 12 being homozygotes and 11 being heterozygotes. This new research shows genetic heterogeneity in 3M syndrome, in contrast to the clinical homogeneity. Additional studies are still ongoing and will lead to the understanding of this new information.
- This study provides more insight on the three genes involved in 3M syndrome and how they interact with each other in normal development. It lead to the discovery that the CUL7, OBS1, and CCDC8 form a complex that functions to maintain microtubule and genomic integrity.
There is no cure as of now. Treatment is directed towards the specific symptoms that are present in each individual. Individuals with hearing loss are able to get treated with hearing aids.
3C syndrome is very rare, occurring in less than 1 birth per million. Because of consanguinity due to a founder effect, it is much more common in a remote First Nations village in Manitoba, where 1 in 9 people carries the recessive gene.
3-M syndrome is most often caused by a mutation in the gene CUL7, but can also be seen with mutations in the genes OBS1 and CCDC8 at lower frequencies. This is an inheritable disorder and can be passed down from parent to offspring in an autosomal recessive pattern. An individual must receive two copies of the mutated gene, one from each parent, in order to be have 3-M syndrome. An individual can be a carrier for the disorder if they inherit only one mutant copy of the gene, but will not present any of the symptoms associated with the disorder.
Since 3-M syndrome is a genetic condition there are no known methods to preventing this disorder. However, genetic testing on expecting parents and prenatal testing, which is a molecular test that screens for any problems in the heath of a fetus during pregnancy, may be available for families with a history of this disorder to determine the fetus' risk in inheriting this genetic disorder.
After the last primary tooth is lost, usually around the age of twelve, final orthodontic treatment can be initiated. A patient that has not been able to close or swallow well probably will have an open bite, deficient lower-jaw growth, a narrow archform with crowded teeth, and upper anterior flaring of teeth. Orthognathic (jaw) surgery may be indicated. This should be completed in most situations before the smile surgery where the gracilis muscle is grafted to the face.
Genetic links to 13q12.2 and 1p22 have been suggested.
Children with DOCK8 deficiency do not tend to live long; sepsis is a common cause of death at a young age. CNS and vascular complications are other common causes of death.
The lateral meningocele syndrome is a very rare skeletal disorder with facial anomalies, hypotonia and meningocele-related neurologic dysfunction.
Though the outcome for individuals with either form of the tetrasomy is highly variable, mosaic individuals consistently experience a more favourable outcome than those with the non-mosaic form. Some affected infants die shortly after birth, particularly those with the non-mosaic tetrasomy. Many patients do not survive to reproductive age, while others are able to function relatively normally in a school or workplace setting. Early diagnosis and intervention has been shown to have a strong positive influence on the prognosis.
Smith–Fineman–Myers syndrome (SFMS1), congenital disorder that causes birth defects. This syndrome was named after 3 men, Richard D. Smith, Robert M. Fineman and Gart G. Myers who discovered it around 1980.
DOCK8 deficiency is very rare, estimated to be found in less than one person per million; there have been 32 patients diagnosed as of 2012.
Genitopatellar Syndrome is an autosomal dominant inheritance where the mutation in the KAT6B causes the syndrome. The KAT6B gene is responsible for making an enzyme called histone acetyltransferase which functions in regulating and making of histone which are proteins that attach to DNA and give the chromosomes their shape. The function of histone acetyltransferase produced from KAT6B is unknown but it is considered as a regulator of early developments. There is little known about how the mutation in the KAT6B causes the syndrome but researchers suspects that the mutations occur near the end of the KAT6B gene and causes it to produce shortened acetyltransferase enzyme. The shortened enzyme alters the regulation of other genes. On the other hand, the mutation of KAT6B leading to the specific features of genitopatellar syndrome is still not surely proven.
SFMS is an X-linked disease by chromosome Xq13. X-linked diseases map to the human X chromosome because this syndrome is an X chromosome linked females who have two chromosomes are not affected but because males only have one X chromosome, they are more likely to be affected and show the full clinical symptoms. This disease only requires one copy of the abnormal X-linked gene to display the syndrome. Since females have two X chromosomes, the effect of one X chromosome is recessive and the second chromosome masks the affected chromosome.
Affected fathers can never pass this X-linked disease to their sons but affected fathers can pass the X-linked gene to their daughters who has a 50% chance to pass this disease-causing gene to each of her children. Since females who inherit this gene do not show symptoms, they are called carriers. Each of the female's carrier's son has a 50% chance to display the symptoms but none of the female carrier's daughters would display any symptoms.
Some patients with SFMS have been founded to have a mutation of the gene in the ATRX on the X chromosome, also known as the Xq13 location. ATRX is a gene disease that is associated with other forms of X-linked mental retardation like Alpha-thalassemia/mental retardation syndrome, Carpenter syndrome, Juberg-Marsidi syndrome, and soastic paraplegia. It is possible that patients with SFMS have Alpha-thalassemia/mental retardation syndrome without the affected hemoglobin H that leads to Alphathalassemia/ mental retardation syndrome in the traditionally recognized disease.