Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Individuals with MVP are at higher risk of bacterial infection of the heart, called infective endocarditis. This risk is approximately three- to eightfold the risk of infective endocarditis in the general population. Until 2007, the American Heart Association recommended prescribing antibiotics before invasive procedures, including those in dental surgery. Thereafter, they concluded that "prophylaxis for dental procedures should be recommended only for patients with underlying cardiac conditions associated with the highest risk of adverse outcome from infective endocarditis."
Many organisms responsible for endocarditis are slow-growing and may not be easily identified on routine blood cultures (these fastidious organisms require special culture media to grow). These include the HACEK organisms, which are part of the normal oropharyngeal flora and are responsible for perhaps 5 to 10% of infective endocarditis affecting native valves. It is important when considering endocarditis to keep these organisms in mind.
The prognosis of tricuspid insufficiency is less favorable for males than females. Furthermore, increased tricuspid insufficiency (regurgitation) severity is an indication of a poorer prognosis according to Nath, et al. It is also important to note that since tricuspid insufficiency most often arises from left heart failure or pulmonary hypertension, the person's prognosis is usually dictated by the prognosis of the latter conditions and not by the tricuspid insufficiency "per se".
In Heyde's syndrome, aortic stenosis is associated with gastrointestinal bleeding due to angiodysplasia of the colon. Recent research has shown that the stenosis causes a form of von Willebrand disease by breaking down its associated coagulation factor (factor VIII-associated antigen, also called von Willebrand factor), due to increased turbulence around the stenotic valve.
The risk of death in individuals with aortic insufficiency, dilated ventricle, normal ejection fraction who are asymptomatic is about 0.2 percent per year. Risk increases if the ejection fraction decreases or if the individual develops symptoms.
Individuals with chronic (severe) aortic regurgitation follow a course that once symptoms appear, surgical intervention is needed. AI is fatal in 10 to 20% of individuals who do not undergo surgery for this condition. Left ventricle dysfunction determines to an extent the outlook for severity of aortic regurgitation cases.
Inflammation of the heart valves due to any cause is called valvular endocarditis; this is usually due to bacterial infection but may also be due to cancer (marantic endocarditis), certain autoimmune conditions (Libman-Sacks endocarditis, seen in systemic lupus erythematosus) and hypereosinophilic syndrome (Loeffler endocarditis). Certain medications have been associated with valvular heart disease, most prominently ergotamine derivatives pergolide and cabergoline.
Valvular heart disease resulting from rheumatic fever is referred to as "rheumatic heart disease". Damage to the heart valves follows infection with beta-hemolytic bacteria, such as typically of the respiratory tract. Pathogenesis is dependent on cross reaction of M proteins produced by bacteria with the myocardium. This results in generalized inflammation in the heart, this manifests in the mitral valve as vegetations, and thickening or fusion of the leaflets, leading to a severely compromised buttonhole valve.
Rheumatic heart disease typically only involves the mitral valve (70% of cases), though in some cases the aortic and mitral valves are both involved (25%). Involvement of other heart valves without damage to the mitral are exceedingly rare.
While developed countries once had a significant burden of rheumatic fever and rheumatic heart disease, medical advances and improved social conditions have dramatically reduced their incidence. Many developing countries, as well as indigenous populations within developed countries, still carry a significant burden of rheumatic fever and rheumatic heart disease and there has been a resurgence in efforts to eradicate the diseases in these populations.
Almost all cases of mitral stenosis are due to disease in the heart secondary to rheumatic fever and the consequent rheumatic heart disease. Uncommon causes of mitral stenosis are calcification of the mitral valve leaflets, and as a form of congenital heart disease. However, there are primary causes of mitral stenosis that emanate from a cleft mitral valve. It is the most common valvular heart disease in pregnancy.
Other causes include infective endocarditis where the vegetations may favor increase risk of stenosis. Other rare causes include mitral annular calcification, endomyocardial fibroelastosis, malignant carcinoid syndrome, systemic lupus erythematosus, whipple disease, fabry disease, and rheumatoid arthritis. hurler' disease, hunter's disease, amyloidosis.
Notwithstanding the foregoing, the American Heart Association has recently changed its recommendations regarding antibiotic prophylaxis for endocarditis. Specifically, as of 2007, it is recommended that such prophylaxis should be limited only to those with prosthetic heart valves, those with previous episode(s) of endocarditis, and those with certain types of congenital heart disease.
Since the stenosed aortic valve may limit the heart's output, people with aortic stenosis are at risk of syncope and dangerously low blood pressure should they use any of a number of medications for cardiovascular diseases that often coexist with aortic stenosis. Examples include nitroglycerin, nitrates, ACE inhibitors, terazosin (Hytrin), and hydralazine. Note that all of these substances lead to peripheral vasodilation. Under normal circumstances, in the absence of aortic stenosis, the heart is able to increase its output and thereby offset the effect of the dilated blood vessels. In some cases of aortic stenosis, however, due to the obstruction of blood flow out of the heart caused by the stenosed aortic valve, cardiac output cannot be increased. Low blood pressure or syncope may ensue.
The natural history of mitral stenosis secondary to rheumatic fever (the most common cause) is an asymptomatic latent phase following the initial episode of rheumatic fever. This latent period lasts an average of 16.3 ± 5.2 years. Once symptoms of mitral stenosis begin to develop, progression to severe disability takes 9.2 ± 4.3 years.
In individuals having been offered mitral valve surgery but refused, "survival" with medical therapy alone was 44 ± 6% at 5 years, and 32 ± 8% at 10 years after they were offered correction.
The following table includes the main types of valvular stenosis and regurgitation. Major types of valvular heart disease not included in the table include mitral valve prolapse, rheumatic heart disease and endocarditis.
MVP may occur with greater frequency in individuals with Ehlers-Danlos syndrome, Marfan syndrome or polycystic kidney disease. Other risk factors include Graves disease and chest wall deformities such as pectus excavatum. For unknown reasons, MVP patients tend to have a low body mass index (BMI) and are typically leaner than individuals without MVP.
Rheumatic fever is common worldwide and responsible for many cases of damaged heart valves. Chronic rheumatic heart disease is characterized by repeated inflammation with fibrinous resolution. The cardinal anatomic changes of the valve include leaflet thickening, commissural fusion, and shortening and thickening of the tendinous cords. The recurrence of rheumatic fever is relatively common in the absence of maintenance of low dose antibiotics, especially during the first three to five years after the first episode. Heart complications may be long-term and severe, particularly if valves are involved. Rheumatic fever, since the advent of routine penicillin administration for Strep throat, has become less common in developed countries. In the older generation and in much of the less-developed world, valvular disease (including mitral valve prolapse, reinfection in the form of valvular endocarditis, and valve rupture) from undertreated rheumatic fever continues to be a problem.
In an Indian hospital between 2004 and 2005, 4 of 24 endocarditis patients failed to demonstrate classic vegetations. All had rheumatic heart disease (RHD) and presented with prolonged fever. All had severe eccentric mitral regurgitation (MR). (One had severe aortic regurgitation (AR) also.) One had flail posterior mitral leaflet (PML).
Bicuspid aortic valves are the most common cardiac valvular anomaly, occurring in 1–2% of the general population. It is twice as common in males as in females.
Bicuspid aortic valve is a heritable condition, with a demonstrated association with mutations in the NOTCH1 gene. Its heritability (formula_1) is as high as 89%. Both familial clustering and isolated valve defects have been documented. The incidence of bicuspid aortic valve can be as high as 10% in families affected with the valve problem..Recent studies suggest that BAV is an autosomal dominant condition with incomplete penetrance. Other congenital heart defects are associated with bicuspid aortic valve at various frequencies, including coarctation of the aorta.
The mitral valve apparatus comprises two valve leaflets, the mitral valve annulus, which forms a ring around the valve leaflets, and the papillary muscles, which tether the valve leaflets to the left ventricle and prevent them from prolapsing into the left atrium. The "chordae tendineae" are also present and connect the valve leaflets to the papillary muscles. Dysfunction of any of these portions of the mitral valve apparatus can cause regurgitation.
The most common cause of MI in developing countries is mitral valve prolapse (MVP). and is the most common cause of primary mitral regurgitation in the United States, causing about 50% of cases. Myxomatous degeneration of the mitral valve is more common in women as well as with advancing age, which causes a stretching of the leaflets of the valve and the chordae tendineae. Such elongation prevents the valve leaflets from fully coming together when the valve closes, causing the valve leaflets to prolapse into the left atrium, thereby causing MI.
Ischemic heart disease causes MI by the combination of ischemic dysfunction of the papillary muscles, and the dilatation of the left ventricle. This can lead to the subsequent displacement of the papillary muscles and the dilatation of the mitral valve annulus.
Rheumatic fever and Marfan's syndrome are other typical causes. MI and mitral valve prolapse are also common in Ehlers Danlos Syndrome.
Secondary mitral insufficiency is due to the dilatation of the left ventricle that causes stretching of the mitral valve annulus and displacement of the papillary muscles. This dilatation of the left ventricle can be due to any cause of dilated cardiomyopathy including aortic insufficiency, nonischemic dilated cardiomyopathy, and Noncompaction cardiomyopathy. Because the papillary muscles, chordae, and valve leaflets are usually normal in such conditions, it is also called functional mitral insufficiency.
Acute MI is most often caused by endocarditis, mainly "S. aureus". Rupture or dysfunction of the papillary muscle are also common causes in acute cases, dysfunction, which can include mitral valve prolapse.
Quadricuspid aortic valves are very rare cardiac valvular anomalies with a prevalence of 0.013% to 0.043% of cardiac cases and a prevalence of 1 in 6000 patients that undertake aortic valve surgery. There is a slight male predominance in all of the cases, and the mean age is 50.7.
In terms of the cause of aortic insufficiency, is often due to the aortic root dilation ("annuloaortic ectasia"), which is idiopathic in over 80% of cases, but otherwise may result from aging, syphilitic aortitis, osteogenesis imperfecta, aortic dissection, Behçet's disease, reactive arthritis and systemic hypertension. Aortic root dilation is the most common cause of aortic insufficiency in developed countries. Additionally, aortic insufficiency has been linked to the use of some medications, specifically medications containing fenfluramine or dexfenfluramine isomers and dopamine agonists. Other potential causes that affect the valve directly include Marfan syndrome, Ehlers–Danlos syndrome, ankylosing spondylitis, and systemic lupus erythematosus. In acute cases of aortic insufficiency, the main causes are infective endocarditis, aortic dissection or trauma.
Significant mitral valve regurgitation has a prevalence of approximately 2% of the population, affecting males and females equally. It is one of the two most common valvular heart diseases in the elderly.
The epidemiology of pulmonary valve stenosis can be summed up by the congenital aspect which is the majority of cases, in broad terms PVS is rare in the general population.
Bicuspid aortic valve abnormality is seen in 1 to 2 percent of all live births. It is associated with a number of mutations affecting Notch signalling pathway.
Tricuspid insufficiency (TI), a valvular heart disease also called tricuspid regurgitation (TR), refers to the failure of the heart's tricuspid valve to close properly during systole. This defect allows the blood to flow backwards, reducing its efficiency.
Regurgitation may be due to a structural change of components of the tricuspid valve apparatus, a lesion can be primary (intrinsic abnormality) or secondary (right ventricular dilatation).
In terms of the cause of pulmonary atresia, there is uncertainty as to what instigates this congenital heart defect. Potential risk factors that can cause this congenital heart defect are those the pregnant mother may come in contact with, such as:
- Certain medications
- Diet
- Smoking
Pulmonary valve stenosis (PVS) is a heart valve disorder in which outflow of blood from the right ventricle of the heart is obstructed at the level of the pulmonic valve. This type of pulmonic stenosis results in the reduction of flow of blood to the lungs. Valvular pulmonic stenosis accounts for 80% of right ventricular outflow tract obstruction. While the most common cause of pulmonary valve stenosis is congenital heart disease, it may also be due to a malignant carcinoid tumor. Both stenosis of the pulmonary artery and pulmonary valve stenosis are forms of pulmonic stenosis (nonvalvular and valvular, respectively). PVS was the key finding that led Jacqueline Noonan to identify the syndrome now called Noonan syndrome.
Tricuspid Valve Stenosis is a valvular heart disease that narrows the opening of the heart's tricuspid valve. It is a relatively rare condition that causes stenosis-increased restriction of blood flow through the valve.
Heart valve dysplasia is a congenital heart defect which affects the aortic, pulmonary, mitral, and tricuspid heart valves. Dysplasia of the mitral and tricuspid valves can cause leakage of blood or stenosis.
Dysplasia of the mitral and tricuspid valves - also known as the atrioventricular (AV) valves - can appear as thickened, shortened, or notched valves. The chordae tendinae can be fused or thickened. The papillary muscles can be enlarged or atrophied. The cause is unknown, but genetics play a large role. Dogs and cats with tricuspid valve dysplasia often also have an open foramen ovale, an atrial septal defect, or inflammation of the right atrial epicardium. In dogs, tricuspid valve dysplasia can be similar to Ebstein's anomaly in humans.
Mitral valve stenosis is one of the most common congenital heart defects in cats. In dogs, it is most commonly found in Great Danes, German Shepherd Dogs, Bull Terriers, Golden Retrievers, Newfoundlands, and Mastiffs. Tricuspid valve dysplasia is most common in the Old English Sheepdog, German Shepherd Dog, Weimaraner, Labrador Retriever, Great Pyrenees, and sometimes the Papillon. It is inherited in the Labrador Retriever.
The disease and symptoms are similar to progression of acquired valve disease in older dogs. Valve leakage leads to heart enlargement, arrhythmias, and congestive heart failure. Heart valve dysplasia can be tolerated for years or progress to heart failure in the first year of life. Diagnosis is with an echocardiogram. The prognosis is poor with significant heart enlargement.
Tricuspid valve stenosis itself usually doesn't require treatment. If stenosis is mild, monitoring the condition closely suffices. However, severe stenosis, or damage to other valves in the heart, may require surgical repair or replacement.
The treatment is usually by surgery (tricuspid valve replacement) or percutaneous balloon valvuloplasty. The resultant tricuspid regurgitation from percutaneous treatment is better tolerated than the insufficiency occurring during mitral valvuloplasty.
The most common complications of QAV are aortic regurgitations. This is caused by the inadequate closing of the four cusps during systole. The fourth dysplastic cusp is incapable of fully closing the aortic annulus, which causes a backflow of blood through the aortic valve. Using transthoracic echocardiograms, 3-D TEE and ECG traces, it is also possible to find left ventricular hypertrophy, bundle branch blocks, and abnormal displacement of the ostium in the right coronary artery in association with QAV. Some research has shown increased incidences of atrial fibrillation to be associated but this relationship is not yet clearly established.
In treating pulmonary insufficiency, it should be determined if pulmonary hypertension is causing the problem to therefore begin the most appropriate therapy as soon as possible (primary pulmonary hypertension or secondary pulmonary hypertension due to thromboembolism). Furthermore, pulmonary insufficiency is generally treated by addressing the underlying condition, in certain cases, the pulmonary valve may be surgically replaced.