Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
In 2012, the World Health Organization estimated that vaccination prevents 2.5 million deaths each year. If there is 100% immunization, and 100% efficacy of the vaccines, one out of seven deaths among young children could be prevented, mostly in developing countries, making this an important global health issue. Four diseases were responsible for 98% of vaccine-preventable deaths: measles, "Haemophilus influenzae" serotype b, pertussis, and neonatal tetanus.
The Immunization Surveillance, Assessment and Monitoring program of the WHO monitors and assesses the safety and effectiveness of programs and vaccines at reducing illness and deaths from diseases that could be prevented by vaccines.
Vaccine-preventable deaths are usually caused by a failure to obtain the vaccine in a timely manner. This may be due to financial constraints or to lack of access to the vaccine. A vaccine that is generally recommended may be medically inappropriate for a small number of people due to severe allergies or a damaged immune system. In addition, a vaccine against a given disease may not be recommended for general use in a given country, or may be recommended only to certain populations, such as young children or older adults. Every country makes its own vaccination recommendations, based on the diseases that are common in its area and its healthcare priorities. If a vaccine-preventable disease is uncommon in a country, then residents of that country are unlikely to receive a vaccine against it. For example, residents of Canada and the United States do not routinely receive vaccines against yellow fever, which leaves them vulnerable to infection if travelling to areas where risk of yellow fever is highest (endemic or transitional regions).
The majority of people survive measles, though in some cases, complications may occur. Possible consequences of measles virus infection include bronchitis, sensorineural hearing loss, and—in about 1 in 10,000 to 1 in 300,000 cases—panencephalitis, which is usually fatal. Acute measles encephalitis is another serious risk of measles virus infection. It typically occurs two days to one week after the breakout of the measles rash and begins with very high fever, severe headache, convulsions and altered mentation. A person with measles encephalitis may become comatose, and death or brain injury may occur.
Persons with component deficiencies in the final common complement pathway (C3,C5-C9) are more susceptible to "N. meningitidis" infection than complement-satisfactory persons, and it was estimated that the risk of infection is 7000 times higher in such individuals. In addition, complement component-deficient populations frequently experience frequent meningococcal disease since their immune response to natural infection may be less complete than that of complement non-deficient persons.
Inherited properdin deficiency also is related, with an increased risk of contracting meningococcal disease. Persons with functional or anatomic asplenia may not efficiently clear encapsulated "Neisseria meningitidis" from the bloodstream Persons with other conditions associated with immunosuppression also may be at increased risk of developing meningococcal disease.
A "vaccine-preventable disease" is an infectious disease for which an effective preventive vaccine exists. If a person acquires a vaccine-preventable disease and dies from it, the death is considered a vaccine-preventable death.
The most common and serious vaccine-preventable diseases tracked by the World Health Organization (WHO) are: diphtheria, "Haemophilus influenzae" serotype b infection, hepatitis B, measles, meningitis, mumps, pertussis, poliomyelitis, rubella, tetanus, tuberculosis, and yellow fever. The WHO reports licensed vaccines being available to prevent, or contribute to the prevention and control of, 25 vaccine-preventable infections.
Non-specific effects are frequently different in males and females. There are accumulating data illustrating that males and females may respond differently to vaccination, both in terms of the quality and quantity of the immune response. If true, then we must consider whether vaccination schedules should differ for males and females, or as has been suggested "should we treat the sexes differently in order to treat them equally?"
The live attenuated BCG vaccine developed against tuberculosis has been shown to have strong beneficial effects on the ability to combat non-tuberculosis infections.
Several studies have suggested that BCG vaccination may reduce atopy, particularly when given early in life. Furthermore, in multiple observational studies BCG vaccination has been shown to provide beneficial effects on overall mortality. These observations encouraged randomised controlled trials to examine BCG vaccination's beneficial non-specific effects on overall health. Since BCG vaccination is recommended to be given at birth in countries that have a high incidence of tuberculosis it would have been unethical to randomize children into 'BCG' vs. 'no BCG' groups. However, many low-income countries delay BCG vaccination for low-birth-weight (LBW) infants; this offered the opportunity to directly test the effect of BCG on overall mortality.
In the first two randomised controlled trials receipt of BCG+OPV at birth vs. OPV only ('delayed BCG') was associated with strong reductions in neonatal mortality; these effects were seen as early as 3 days after vaccination. BCG protected against sepsis as well as respiratory infections.
Among BCG vaccinated children, those who develop a BCG scar or a positive skin test (TST) are less likely to develop sepsis and exhibit an overall reduction in child mortality of around 50%.
In a recent WHO-commissioned review based on five clinical trials and nine observational studies, it was concluded that "the results indicated a beneficial effect of BCG on overall mortality in the first 6–12 months of life. Relevant follow-up in some of the trials was short, and all of the observational studies were regarded as being at risk of bias, so the confidence in the findings was rated as very low according to the GRADE criteria and "There was a suggestion that BCG vaccination may be more beneficial the earlier it is given". Furthermore, "estimated effects are in the region of a halving of mortality risk" and "any effect of BCG vaccine on all-cause mortality is not likely to be attributable to any great extent to fewer deaths from tuberculosis (i.e. to a specific effect of BCG vaccine against tuberculosis)". Based on the evidence, the WHO's Strategic Group of Experts on Immunization concluded that "the non-specific effects on all-cause mortality warrant further research".
Measles antibodies are transferred from mothers who have been vaccinated against measles or who have been previously infected with measles to their children while they are still in the womb. Such antibodies will usually give newborn infants some immunity against measles, but such antibodies are gradually lost over the course of the first six months of life. Infants under one year of age whose maternal anti-measles antibodies have disappeared become susceptible to infection with the measles virus.
In developed countries, it is recommended that children be immunized against measles at 12 months, generally as part of a three-part MMR vaccine (measles, mumps, and rubella). The vaccine is generally not given before this age because such infants respond inadequately to the vaccine due to an immature immune system. A second dose of the vaccine is usually given to children between the ages of four and five, to increase rates of immunity. Vaccination rates have been high enough to make measles relatively uncommon. Adverse reactions to vaccination are rare, with fever and pain at the injection site being the most common. Life-threatening adverse reactions occur in less than one per million vaccinations (<0.0001%).
In developing countries where measles is endemic, WHO doctors recommend two doses of vaccine be given at six and nine months of age. The vaccine should be given whether the child is HIV-infected or not. The vaccine is less effective in HIV-infected infants than in the general population, but early treatment with antiretroviral drugs can increase its effectiveness. Measles vaccination programs are often used to deliver other child health interventions, as well, such as bed nets to protect against malaria, antiparasite medicine and vitamin A supplements, and so contribute to the reduction of child deaths from other causes.
The Advisory Committee on Immunization Practices (ACIP) has long recommended that all adult international travelers who do not have positive evidence of previous measles immunity receive two doses of MMR vaccine before traveling. Despite this, a retrospective study of pre-travel consultations with prospective travelers at CDC-associated travel clinics found that of the 16% of adult travelers who were considered eligible for vaccination, only 47% underwent vaccination during the consultation; of these, patient refusal accounted for nearly half (48%), followed by healthcare provider decisions (28%) and barriers in the health system (24%).
The mortality rate of the virus largely depends on the immune status of the infected dogs. Puppies experience the highest mortality rate, where complications such as pneumonia and encephalitis are more common. In older dogs that develop distemper encephalomyelitis, vestibular disease may present. Around 15% of canine inflammatory central nervous system diseases are a result of CDV.
Human-to-human transmission of diphtheria typically occurs through the air when an infected individual coughs or sneezes. Breathing in particles released from the infected individual leads to infection Contact with any lesions on the skin can also lead to transmission of diphtheria, but this is uncommon. Indirect infections can occur, as well. If an infected individual touches a surface or object, the bacteria can be left behind and remain viable. Also, some evidence indicates diphtheria has the potential to be zoonotic, but this has yet to be confirmed. "Corynebacterium ulcerans" has been found in some animals, which would suggest zoonotic potential
Rubella infection of children and adults is usually mild, self-limiting and often asymptomatic. The prognosis in children born with CRS is poor.
In the United States there are typically between a couple of hundred and a couple of thousand cases a year.
Diphtheria is fatal in between 5% and 10% of cases. In children under five years and adults over 40 years, the fatality rate may be as much as 20%. In 2013, it resulted in 3,300 deaths, down from 8,000 deaths in 1990.
The number of cases has changed over the course of the last 2 decades, specifically throughout developing countries. Better standards of living, mass immunization, improved diagnosis, prompt treatment, and more effective health care have led to the decrease in cases worldwide. However, although outbreaks are rare, they still occur worldwide, especially in developed nations such as Germany among unvaccinated children, and Canada. After the breakup of the former Soviet Union in the early 1990s, vaccination rates in its constituent countries fell so low that an explosion of diphtheria cases occurred. In 1991, 2,000 cases of diphtheria occurred in the USSR. Because of this outbreak, since 1992, many of the cases reported throughout other parts of Europe have been linked to the NIS epidemic. Belgium (3/3) and Finland (10/10) come in first, stating that 100% of cases are connected to this epidemic. However, locations such as Poland and Germany have had a larger number of people diagnosed with Diphtheria overall, but claim that a smaller percentage have been linked directly to the NIS. By 1998 as many as 200,000 cases in the Commonwealth of Independent States were reported, with 5,000 deaths.
Because the risk of meningococcal disease is increased among USA's military recruits, all military recruits routinely receive primary immunization against the disease.
The prevalence of canine distemper in the community has decreased dramatically due to the availability of vaccinations. However, the disease continues to spread among unvaccinated populations, such as those in animal shelters and pet stores. This provides a great threat to both the rural and urban communities throughout the United States, affecting both shelter and domestic canines. Despite the effectiveness of the vaccination, outbreaks of this disease continue to occur nationally. In April 2011, the Arizona Humane Society released a valley-wide pet health alert throughout Phoenix, Arizona.
Outbreaks of canine distemper continue to occur throughout the United States and elsewhere, and are caused by many factors. These factors include the overpopulation of dogs and the irresponsibility of pet owners. The overpopulation of dogs is a national problem that organizations such as the Humane Society and ASPCA face every day. This problem is even greater within areas such as Arizona, owing to the vast amount of rural land. An unaccountable number of strays that lack vaccinations reside in these areas and are therefore more susceptible to diseases such as canine distemper. These strays act as a host for the virus, spreading it throughout the surrounding area, including urban areas. Puppies and dogs that have not received their shots can then be infected if in a place where many dogs interact, such as a dog park.
Rubella infections are prevented by active immunisation programs using live attenuated virus vaccines. Two live attenuated virus vaccines, RA 27/3 and Cendehill strains, were effective in the prevention of adult disease. However their use in prepubertal females did not produce a significant fall in the overall incidence rate of CRS in the UK. Reductions were only achieved by immunisation of all children.
The vaccine is now usually given as part of the MMR vaccine. The WHO recommends the first dose be given at 12 to 18 months of age with a second dose at 36 months. Pregnant women are usually tested for immunity to rubella early on. Women found to be susceptible are not vaccinated until after the baby is born because the vaccine contains live virus.
The immunisation program has been quite successful. Cuba declared the disease eliminated in the 1990s, and in 2004 the Centers for Disease Control and Prevention announced that both the congenital and acquired forms of rubella had been eliminated from the United States.
Screening for rubella susceptibility by history of vaccination or by serology is recommended in the United States for all women of childbearing age at their first preconception counseling visit to reduce incidence of congenital rubella syndrome (CRS). It is recommended that all susceptible non-pregnant women of childbearing age should be offered rubella vaccination. Due to concerns about possible teratogenicity, use of MMR vaccine is not recommended during pregnancy. Instead, susceptible pregnant women should be vaccinated as soon as possible in the postpartum period.
Common complications include pneumonia, bronchitis, encephalopathy, earache, and seizures. Most healthy older children and adults fully recover, but those with comorbid conditions have a higher risk of morbidity and mortality.
Infection in newborns is particularly severe. Pertussis is fatal in an estimated 1.6% of hospitalized US infants under one year of age. First-year infants are also more likely to develop complications, such as: pneumonia (20%), encephalopathy (0.3%), seizures (1%), failure to thrive, and death (1%)—perhaps due to the ability of the bacterium to suppress the immune system. Pertussis can cause severe paroxysm-induced cerebral hypoxia, and 50% of infants admitted to hospital suffer apneas. Reported fatalities from pertussis in infants increased substantially from 1990 to 2010.
In addition to vaccine-specific factors, vets and owners should also consider pet-specific factors that have been shown to increase the risk of adverse reactions in both dogs and cats. Examples of such factors include:
- age,
- number of vaccinations per office visit,
- size,
- general health of the animal,
- breed,
- neutered status, and
- past vaccination history.
The most common preventative measure against mumps is a vaccination with a mumps vaccine, invented by American microbiologist Maurice Hilleman at Merck. The vaccine may be given separately or as part of the MMR immunization vaccine that also protects against measles and rubella. In the US, MMR is now being supplanted by MMRV, which adds protection against chickenpox (varicella, HHV3). The WHO (World Health Organization) recommends the use of mumps vaccines in all countries with well-functioning childhood vaccination programmes. In the United Kingdom it is routinely given to children at age 13 months with a booster at 3–5 years (preschool) This confers lifelong immunity. The American Academy of Pediatrics recommends the routine administration of MMR vaccine at ages 12–15 months and at 4–6 years. In some locations, the vaccine is given again between four and six years of age, or between 11 and 12 years of age if not previously given. The efficacy of the vaccine depends on the strain of the vaccine, but is usually around 80 percent. The Jeryl Lynn strain is most commonly used in developed countries but has been shown to have reduced efficacy in epidemic situations. The Leningrad-Zagreb strain commonly used in developing countries appears to have superior efficacy in epidemic situations.
Because of the outbreaks within college and university settings, many governments have established vaccination programs to prevent large-scale outbreaks. In Canada, provincial governments and the Public Health Agency of Canada have all participated in awareness campaigns to encourage students ranging from grade one to college and university to get vaccinated.
Some anti-vaccine activists protest against the administration of a vaccine against mumps, claiming that the attenuated vaccine strain is harmful, and/or that the wild disease is beneficial. There is no evidence whatsoever to support the claim that the wild disease is beneficial, or that the MMR vaccine is harmful. Claims have been made that the MMR vaccine is linked to autism and inflammatory bowel disease, including one study by Andrew Wakefield. The paper was discredited and retracted in 2010 and Wakefield was later stripped of his license after his work was found to be an "elaborate fraud". Also, subsequent studies indicate no link between vaccination with the MMR and autism. Since the dangers of the disease are well known, and the dangers of the vaccine are quite minimal, most doctors recommend vaccination.
The WHO, the American Academy of Pediatrics, the Advisory Committee on Immunization Practices of the Centers for Disease Control and Prevention, the American Academy of Family Physicians, the British Medical Association and the Royal Pharmaceutical Society of Great Britain currently recommend routine vaccination of children against mumps. The British Medical Association and Royal Pharmaceutical Society of Great Britain had previously recommended against general mumps vaccination, changing that recommendation in 1987.
Before the introduction of the mumps vaccine, the mumps virus was the leading cause of viral meningoencephalitis in the United States. However, encephalitis occurs rarely (less than two per 100,000). In one of the largest studies in the literature, the most common symptoms of mumps meningoencephalitis were found to be fever (97 percent), vomiting (94 percent) and headache (88.8 percent). The mumps vaccine was introduced into the United States in December 1967: since its introduction there has been a steady decrease in the incidence of mumps and mumps virus infection. There were 151,209 cases of mumps reported in 1968. From 2001 to 2008, the case average was only 265 per year, excluding an outbreak of less than 6000 cases in 2006 attributed largely to university contagion in young adults.
The pathogenic agent is found everywhere except New Zealand. The bacterium is extremely sustainable and virulent: a single organism is able to cause an infection. The common source of infection is inhalation of contaminated dust, contact with contaminated milk, meat, or wool, and particularly birthing products. Ticks can transfer the pathogenic agent to other animals. Transfer between humans seems extremely rare and has so far been described in very few cases.
Some studies have shown more men to be affected than women, which may be attributed to different employment rates in typical professions.
“At risk” occupations include:
- Veterinary personnel
- Stockyard workers
- Farmers
- Sheep shearers
- Animal transporters
- Laboratory workers handling potentially infected veterinary samples or visiting abattoirs
- People who cull and process kangaroos
- Hide (tannery) workers
The primary method of prevention for pertussis is vaccination. Evidence is insufficient to determine the effectiveness of antibiotics in those who have been exposed, but are without symptoms. Preventive antibiotics, however, are still frequently used in those who have been exposed and are at high risk of severe disease (such as infants).
Fortunately, severe systemic reaction to vaccine allergy is very rare in dogs. When it does occur, however, anaphylaxis is a life-threatening emergency. More often, dogs will develop urticaria, or hives within minutes of receiving a vaccine. When this occurs, a veterinarian will treat the reaction with antihistamines and corticosteroid drugs and this is usually effective. Future vaccine protocols must be modified according to the vaccine component suspected to have triggered the reaction.
Tetanus is caused by the tetanus bacterium "Clostridium tetani". Tetanus is an international health problem, as "C. tetani" spores are ubiquitous. Spores can be introduced into the body through a puncture wound (penetrating trauma). Due to "C. tetani" being an anaerobic bacterium, it and its endospores thrive in environments that lack oxygen, such as a puncture wound.
The disease occurs almost exclusively in persons inadequately immunized. It is more common in hot, damp climates with soil rich in organic matter. Manure-treated soils may contain spores, as they are widely distributed in the intestines and feces of many animals such as horses, sheep, cattle, dogs, cats, rats, guinea pigs, and chickens. In agricultural areas, a significant number of human adults may harbor the organism.
The spores can also be found on skin surfaces and in contaminated heroin. Heroin users, particularly those that inject the drug subcutaneously, appear to be at high risk of contracting tetanus. Rarely, tetanus can be contracted through surgical procedures, intramuscular injections, compound fractures, and dental infections. The bite of a dog can transmit tetanus.
Tetanus is often associated with rust, especially rusty nails. Although rust itself does not cause tetanus, objects that accumulate rust are often found outdoors or in places that harbour anaerobic bacteria. Additionally, the rough surface of rusty metal provides a habitat for "C. tetani", while a nail affords a means to puncture skin and deliver endospores deep within the body at the site of the wound. An endospore is a non-metabolizing survival structure that begins to metabolize and cause infection once in an adequate environment. Hence, stepping on a nail (rusty or not) may result in a tetanus infection, as the low-oxygen (anaerobic) environment may exist under the skin, and the puncturing object can deliver endospores to a suitable environment for growth.
Between 25 percent and 50 percent of individuals who have recovered from paralytic polio in childhood can develop additional symptoms decades after recovering from the acute infection, notably new muscle weakness and extreme fatigue. This condition is known as post-polio syndrome (PPS) or post-polio sequelae. The symptoms of PPS are thought to involve a failure of the oversized motor units created during the recovery phase of the paralytic disease. Contributing factors that increase the risk of PPS include aging with loss of neuron units, the presence of a permanent residual impairment after recovery from the acute illness, and both overuse and disuse of neurons. PPS is a slow, progressive disease, and there is no specific treatment for it. Post-polio syndrome is not an infectious process, and persons experiencing the syndrome do not shed poliovirus.
Currently, no vaccine against relapsing fever is available, but research continues. Developing a vaccine is very difficult because the spirochetes avoid the immune response of the infected person (or animal) through antigenic variation. Essentially, the pathogen stays one step ahead of antibodies by changing its surface proteins. These surface proteins, lipoproteins called variable major proteins, have only 30–70% of their amino acid sequences in common, which is sufficient to create a new antigenic "identity" for the organism. Antibodies in the blood that are binding to and clearing spirochetes expressing the old proteins do not recognize spirochetes expressing the new ones. Antigenic variation is common among pathogenic organisms. These include the agents of malaria, gonorrhea, and sleeping sickness. Important questions about antigenic variation are also relevant for such research areas as developing a vaccine against HIV and predicting the next influenza pandemic.
Following the widespread use of poliovirus vaccine in the mid-1950s, the incidence of poliomyelitis declined dramatically in many industrialized countries. A global effort to eradicate polio began in 1988, led by the World Health Organization, UNICEF, and The Rotary Foundation. These efforts have reduced the number of annual diagnosed cases by 99.9 percent; from an estimated 350,000 cases in 1988 to a low of 483 cases in 2001, after which it remained at a level of about 1,000 - 2000 cases per year for a number of years. In 2015, cases decreased to 98 and further decreased in 2016 to 37 wild cases and 5 circulating vaccine-derived cases.
Polio is one of only two diseases currently the subject of a global eradication program, the other being Guinea worm disease. So far, the only diseases completely eradicated by humankind are smallpox, declared so, in 1980, and rinderpest, likewise, in 2011.
A number of eradication milestones have already been reached, and several regions of the world have been certified polio-free.
A concern is the presence of circulating vaccine-derived polioviruses. The oral polio vaccine is not perfect: while the genetic characteristics are carefully balanced to maximize efficacy and minimize virulence, it is possible for the polio virus in the oral vaccine to mutate. As a result, persons given the oral polio vaccine can acquire acute or chronic infections; or can transmit (circulate) mutated virus to other people. It is likely that circulating vaccine-derived poliovirus cases will exceed wild-type cases in the near future, making it desirable to discontinue use of the oral polio vaccine as soon as safely possible.