Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The risk of VTE is increased in pregnancy by about five times because of a more hypercoagulable state, a likely adaptation against fatal postpartum hemorrhage. Additionally, pregnant women with genetic risk factors are subject to a roughly three to 30 times increased risk for VTE. Preventative treatments for pregnancy-related VTE in hypercoagulable women were suggested by the ACCP. Homozygous carriers of factor V Leiden or prothrombin G20210A with a family history of VTE were suggested for antepartum LMWH and either LMWH or a vitamin K antagonist (VKA) for the six weeks following childbirth. Those with another thrombophilia and a family history but no previous VTE were suggested for watchful waiting during pregnancy and LMWH or—for those without protein C or S deficiency—a VKA. Homozygous carriers of factor V Leiden or prothrombin G20210A with no personal or family history of VTE were suggested for watchful waiting during pregnancy and LMWH or a VKA for six weeks after childbirth. Those with another thrombophilia but no family or personal history of VTE were suggested for watchful waiting only. Warfarin, a common VKA, can cause harm to the fetus and is not used for VTE prevention during pregnancy.
The 2012 ACCP guidelines offered weak recommendations. For at-risk long-haul travelers—those with "previous VTE, recent surgery or trauma, active malignancy, pregnancy, estrogen use, advanced age, limited mobility, severe obesity, or known thrombophilic disorder"—suggestions included calf exercises, frequent walking, and aisle seating in airplanes to ease walking. The use of graduated compression stockings that fit below the knee and give 15–30 mm Hg of pressure to the ankle was suggested, while aspirin or anticoagulants were not. Compression stockings have sharply reduced the levels of asymptomatic DVT in airline passengers, but the effect on symptomatic VTE is unknown, as none of the individuals studied developed symptomatic VTE.
Thrombosis prevention is initiated with assessing the risk for its development. Some people have a higher risk of developing thrombosis and its possible development into thromboembolism. Some of these risk factors are related to inflammation. "Virchow's triad" has been suggested to describe the three factors necessary for the formation of thrombosis: stasis of blood, vessel wall injury, and altered blood coagulation. Some risk factors predispose for venous thrombosis while others increase the risk of arterial thrombosis.
Thrombophlebitis occurs almost equally between women and men, though males do have a slightly higher possibility. The average age of developing thrombophlebitis, based on analyzed incidents, is 54 for men and 58 for women.
In people without a detectable thrombophilia, the cumulative risk of developing thrombosis by the age of 60 is about 12%. About 60% of people who are deficient in antithrombin will have experienced thrombosis at least once by age 60, as will about 50% of people with protein C deficiency and about a third of those with protein S deficiency. People with activated protein C resistance (usually resulting from factor V Leiden), in contrast, have a slightly raised absolute risk of thrombosis, with 15% having had at least one thrombotic event by the age of sixty. In general, men are more likely than women to experience repeated episodes of venous thrombosis.
People with factor V Leiden are at a relatively low risk of thrombosis, but may develop thrombosis in the presence of an additional risk factor, such as immobilization. Most people with the prothrombin mutation (G20210A) never develop thrombosis.
The main causes of thrombosis are given in Virchow's triad which lists thrombophilia, endothelial cell injury, and disturbed blood flow.
Evidence supports the use of heparin in people following surgery who have a high risk of thrombosis to reduce the risk of DVTs; however, the effect on PEs or overall mortality is not known. In hospitalized non-surgical patients, mortality decreased but not statistically significant. It does not appear however to decrease the rate of symptomatic DVTs. Using both heparin and compression stockings appears better than either one alone in reducing the rate of DVT.
In hospitalized people who have had a stroke and not had surgery, mechanical measures (compression stockings) resulted in skin damage and no clinical improvement. Data on the effectiveness of compression stockings among hospitalized non-surgical patients without stroke is scarce.
The American College of Physicians (ACP) gave three strong recommendations with moderate quality evidence on VTE prevention in non-surgical patients: that hospitalized patients be assessed for their risk of thromboembolism and bleeding before prophylaxis (prevention); that heparin or a related drug is used if potential benefits are thought to outweigh potential harms; and that graduated compression stockings not be used. As an ACP policy implication, the guideline stated a lack of support for any performance measures that incentivize physicians to apply universal prophylaxis without regard to the risks. Goldhaber recommends that people should be assessed at their hospital discharge for persistent high-risk of venous thrombosis, and that people who adopt a heart-healthy lifestyle might lower their risk of venous thrombosis.
In those with cancer who are still walking about yet receiving chemotherapy, LMWH decreases the risk of VTE. Due to potential concerns of bleeding its routine use is not recommended. For people who are having surgery for cancer, it is recommended that they receive anticoagulation therapy (preferably LMWH) in order to prevent a VTE. LMWH is recommended for at least 7–10 days following cancer surgery, and for one month following surgery for people who have a high risk of VTEs.
In adults who have had their lower leg casted or placed in a brace for more than a week, LMWH decreased the risk of VTEs. LMWH is recommended for adults not in hospital with an above-knee cast and a below-knee cast, and is safe for this indication.
Following the completion of warfarin in those with prior VTE, long term aspirin is beneficial.
The overall absolute risk of venous thrombosis per 100,000 woman years in current use of combined oral contraceptives is approximately 60, compared to 30 in non-users. The risk of thromboembolism varies with different types of birth control pills; Compared with combined oral contraceptives containing levonorgestrel (LNG), and with the same dose of estrogen and duration of use, the rate ratio of deep venous thrombosis for combined oral contraceptives with norethisterone is 0.98, with norgestimate 1.19, with desogestrel (DSG) 1.82, with gestodene 1.86, with drospirenone (DRSP) 1.64, and with cyproterone acetate 1.88. Venous thromboembolism occurs in 100–200 per 100,000 pregnant women every year.
Regarding family history, age has substantial effect modification. For individuals with two or more affected siblings, the highest incidence rates is found among those ≥70 years of age (390 per 100,000 in male and 370 per 100,000 in female individuals), whereas the highest incidence ratios compared to those without affected siblings occurred at much younger ages (ratio of 4.3 among male individuals 20 to 29 years of age and 5.5 among female individuals 10 to 19 years of age).
Some 125,000 cases a year have been reported in the United States, but actual incidence of spontaneous thrombophlebitis is unknown.
A fourfold increased incidence from the third to the eight decade in men and a preponderance among women of approximately 55-70%.
The average mean age of affected patients is 60 years.
Thrombophlebitis can develop along the arm, back, or neck veins, the leg is by far the most common site. When it occurs in the leg, the great saphenous vein is usually involved, although other locations are possible.
Patient characteristics and predisposing factors for thrombophlebitis nearly mirror those for DVT; thrombophlebitis is a risk factor for the development of DVT, and vice versa.
Lower extremity superficial phlebitis is associated with conditions that increase the risk of thrombosis, including abnormalities of coagulation or fibrinolysis, endothelial dysfunction, infection, venous stasis, intravenous therapy and intravenous drug abuse.
A number of acquired conditions augment the risk of thrombosis. A prominent example is antiphospholipid syndrome, which is caused by antibodies against constituents of the cell membrane, particularly lupus anticoagulant (first found in people with the disease systemic lupus erythematosus but often detected in people without the disease), anti-cardiolipin antibodies, and anti-β-glycoprotein 1 antibodies; it is therefore regarded as an autoimmune disease. In some cases antiphospholipid syndrome can cause arterial as well as venous thrombosis. It is also more strongly associated with miscarriage, and can cause a number of other symptoms (such as livedo reticularis of the skin and migraine).
Heparin-induced thrombocytopenia (HIT) is due to an immune system reaction against the anticoagulant drug heparin (or its derivatives). Though it is named for associated low platelet counts, HIT is strongly associated with risk of venous and arterial thrombosis. Paroxysmal nocturnal hemoglobinuria (PNH) is a rare condition resulting from acquired alterations in the "PIGA" gene, which plays a role in the protection of blood cells from the complement system. PNH increases the risk of venous thrombosis but is also associated with hemolytic anemia (anemia resulting from destruction of red blood cells). Both HIT and PNH require particular treatment.
Hematologic conditions associated with sluggish blood flow can increase risk for thrombosis. For example, sickle-cell disease (caused by mutations of hemoglobin) is regarded as a mild prothrombotic state induced by impaired flow. Similarly, myeloproliferative disorders, in which the bone marrow produces too many blood cells, predispose to thrombosis, particularly in polycythemia vera (excess red blood cells) and essential thrombocytosis (excess platelets). Again, these conditions usually warrant specific treatment when identified.
Cancer, particularly when metastatic (spread to other places in the body), is a recognised risk factor for thrombosis. A number of mechanisms have been proposed, such as activation of the coagulation system by cancer cells or secretion of procoagulant substances. Furthermore, particular cancer treatments (such as the use of central venous catheters for chemotherapy) may increase the risk of thrombosis further.
Nephrotic syndrome, in which protein from the bloodstream is released into the urine due to kidney diseases, can predispose to thrombosis; this is particularly the case in more severe cases (as indicated by blood levels of albumin below 25 g/l) and if the syndrome is caused by the condition membranous nephropathy. Inflammatory bowel disease (ulcerative colitis and Crohn's disease) predispose to thrombosis, particularly when the disease is active. Various mechanisms have been proposed.
Pregnancy is associated with an increased risk of thrombosis. This probably results from a physiological hypercoagulability in pregnancy that protects against postpartum hemorrhage.
The female hormone estrogen, when used in the combined oral contraceptive pill and in perimenopausal hormone replacement therapy, has been associated with a two- to sixfold increased risk of venous thrombosis. The risk depends on the type of hormones used, the dose of estrogen, and the presence of other thrombophilic risk factors. Various mechanisms, such as deficiency of protein S and tissue factor pathway inhibitor, are said to be responsible.
Obesity has long been regarded as a risk factor for venous thrombosis. It more than doubles the risk in numerous studies, particularly in combination with the use of oral contraceptives or in the period after surgery. Various coagulation abnormalities have been described in the obese. Plasminogen activator inhibitor-1, an inhibitor of fibrinolysis, is present in higher levels in people with obesity. Obese people also have larger numbers of circulating microvesicles (fragments of damaged cells) that bear tissue factor. Platelet aggregation may be increased, and there are higher levels of coagulation proteins such as von Willebrand factor, fibrinogen, factor VII and factor VIII. Obesity also increases the risk of recurrence after an initial episode of thrombosis.
Thrombophlebitis causes include disorders related to increased tendency for blood clotting and reduced speed of blood in the veins such as prolonged immobility; prolonged traveling (sitting) may promote a blood clot leading to thrombophlebitis but this occurs relatively less. High estrogen states such as pregnancy, estrogen replacement therapy, or oral contraceptives are associated with an increased risk of thrombophlebitis.
Specific disorders associated with thrombophlebitis include superficial thrombophlebitis which affects veins near the skin surface, deep venous thrombosis which affects deeper veins, and pulmonary embolism. Those with familial clotting disorders such as protein S deficiency, protein C deficiency, or factor V Leiden are also at increased risk of thrombophlebitis. Thrombophlebitis can be found in people with vasculitis including Behçet's disease. Thrombophlebitis migrans can be a sign of malignancy - Trousseau sign of malignancy..
PTS can affect 23-60% of patients in the two years following DVT of the leg. Of those, 10% may go on to develop severe PTS, involving venous ulcers.
Patients with upper-extremity DVT may develop upper-extremity PTS, but the incidence is lower than that for lower-extremity PTS (15-25%). No treatment or prevention methods are established, but patients with upper-extremity PTS may wear a compression sleeve for persistent symptoms.
In 2004 the first adequately large scale study on the natural history and long-term prognosis of this condition was reported; this showed that at 16 months follow-up 57.1% of patients had full recovery, 29.5%/2.9%/2.2% had respectively minor/moderate/severe symptoms or impairments, and 8.3% had died. Severe impairment or death were more likely in those aged over 37 years, male, affected by coma, mental status disorder, intracerebral hemorrhage, thrombosis of the deep cerebral venous system, central nervous system infection and cancer. A subsequent systematic review of nineteen studies in 2006 showed that mortality is about 5.6% during hospitalisation and 9.4% in total, while of the survivors 88% make a total or near-total recovery. After several months, two thirds of the cases has resolution ("recanalisation") of the clot. The rate of recurrence was low (2.8%).
In children with CVST the risk of death is high. Poor outcome is more likely if a child with CVST develops seizures or has evidence of venous infarction on imaging.
Hypercoagulability in pregnancy, particularly due to inheritable thrombophilia, can lead to placental vascular thrombosis. This can in turn lead to complications like early-onset hypertensive disorders of pregnancy, pre-eclampsia and small for gestational age infants (SGA). Among other causes of hypercoagulability, Antiphospholipid syndrome has been associated with adverse pregnancy outcomes including recurrent miscarriage. Deep vein thrombosis has an incidence of one in 1,000 to 2,000 pregnancies in the United States, and is the second most common cause of maternal death in developed countries after bleeding.
It is known that diabetes causes changes to factors associated with coagulation and clotting, however not much is known of the risk of thromboembolism, or clots, in diabetic patients. There are some studies that show that diabetes increases the risk of thromboembolism; other studies show that diabetes does not increase the risk of thromboembolism. A study conducted in the Umea University Hospital, in Sweden, observed patients that were hospitalized due to an thromboembolism from 1997 to 1999. The researchers had access to patient information including age, sex, vein thromboembolism diagnosis, diagnostic methods, diabetes type and medical history. This study concluded that there is, in fact, an increased risk of thromboembolism development in diabetic patients, possibly due to factors associated with diabetes or diabetes itself. Diabetic patients are twice as likely to develop a thromboembolism than are non-diabetic patient. The exact mechanism of how diabetes increases the risk of clot formation remains unclear and could possibly be a future direction for study.
From previous studies, it is known that long distance air travel is associated with high risk of venous thrombosis. Long periods of inactivity in a limited amount of space may be a reason for the increased risk of blood clot formation. In addition, bent knees compresses the vein behind the knee (the popliteal vein) and the low humidity, low oxygen, high cabin pressure and consumption of alcohol concentrate the blood. A recent study, published in the British Journal of Haematology in 2014, determined which groups of people, are most at risk for developing a clot during or after a long flight. The study focused on 8755 frequent flying employees from international companies and organizations. It found that travelers who have recently undergone a surgical procedure or who have a malignant disease such as cancer or who are pregnant are most at risk. Preventative measures before flying may be taken in these at-risk groups as a solution.
Patients who have undergone kidney transplant have a high risk of developing RVT (about 0.4% to 6%). RVT is known to account for a large proportion of transplanted kidney failures due to technical problems (damage to the renal vein), clotting disorders, diabetes, consumption of ciclosporin or an unknown problem. Patients who have undergone a kidney transplant are commonly prescribed ciclosporin, an immunosuppressant drug which is known to reduce renal blood flow, increase platelet aggregation in the blood and cause damage to the endothelial tissue of the veins. In a clinical study conducted by the Nuffield Department of Surgery at the Oxford Transplant Centre, UK, transplant patients were given low doses of aspirin, which has a some anti-platelet activity. There is risk of bleeding in transplant patients when using anticoagulants like warfarin and herapin. Low dosage of aspirin was used as an alternative. The study concluded that a routine low-dose of aspirin in kidney transplant patients who are also taking ciclosporin significantly reduces the risk of RVT development.
Cerebral venous sinus thrombosis is rare, with an estimated 3-4 cases per million annual incidence in adults. While it may occur in all age groups, it is most common in the third decade. 75% are female. Given that older studies show no difference in incidence between men and women, it has been suggested that the use of oral contraceptives in women is behind the disparity between the sexes. A 1995 report from Saudi Arabia found a doubled incidence at 7 cases per 100,000; this was attributed to the fact that Behçet's disease, which increases risk of CVST, is more common in the Middle East.
A 1973 report found that CVST could be found on autopsy (examination of the body after death) in nine percent of all people. Many of these were elderly and had neurological symptoms in the period leading up to their death, and many suffered from concomitant heart failure.
In children, a Canadian study reported in 2001 that CVST occurs in 6.7 per million annually. 43% occur in the newborn (less than one month old), and a further 10% in the first year of life. Of the newborn, 84% were already ill, mostly from complications after childbirth and dehydration.
Superficial vein thrombosis (SVT) is a type of venous thrombosis, or a blood clot in a vein, which forms in a superficial vein near the surface of the body. Usually there is thrombophlebitis, which is an inflammatory reaction around a thrombosed vein, presenting as a painful induration with erythema. SVT has a limited clinical significance (in terms of morbidity and mortality) when compared to a deep vein thrombosis (DVT), which occurs deeper in the body, at the deep venous system level. If the blood clot is too near from the sapheno-femoral junction there is a bigger risk of pulmonary embolism.
Unfractionated heparin, low molecular weight heparin, warfarin (not to be used during pregnancy) and aspirin remain the basis of antithrombotic treatment and prophylaxis both before and during pregnancy.
While the consensus among physicians is the safety of the mother supersedes the safety of the developing fetus, changes in the anticoagulation regimen during pregnancy can be performed to minimize the risks to the developing fetus while maintaining therapeutic levels of anticoagulants in the mother.
The main issue with anticoagulation in pregnancy is that warfarin, the most commonly used anticoagulant in chronic administration, is known to have teratogenic effects on the fetus if administered in early pregnancy. Still, there seems to be no teratogenic effect of warfarin before six weeks of gestation. However, unfractionated heparin and low molecular weight heparin do not cross the placenta.
In the United States, approximately 550,000 people die each year from heart-related arterial embolism and thrombosis. Approximately 250,000 of these individuals are female, and approximately 100,000 of all these deaths are considered premature, that is, prior to the age of average life expectancy.
A vein disorder is a class of disease involving veins of the circulatory system.
Common vein disorders include:
- Varicose veins
- Deep vein thrombosis
Preventing the development of blood clots in the upper extremities is done by accessing the risk of the development of such clots.The traditional treatment for thrombosis is the same as for a lower extremity DVT, and involves systemic anticoagulation to prevent a pulmonary embolus. Some have also recommended thrombolysis with catheter directed alteplase. If there is thoracic outlet syndrome or other anatomical cause then surgery can be considered to correct the underlying defect.
Possible complications of arterial embolism depend on the site of the obstruction:
- In the heart it can cause myocardial infarction
- In the brain, it can cause a transient ischemic attack (TIA), and, in prolonged blood obstruction, stroke.
- Blockage of arteries that supply arms or legs may result in necrosis and gangrene
- Temporary or permanent decrease or loss of other organ functions
- In septic embolism, there can be infection of the affected tissue or even septic shock,
Studies have found that about 5 percent of Caucasians in North America have factor V Leiden. The condition is less common in Latin Americans and African-Americans and is extremely rare in people of Asian descent.
Up to 30 percent of patients who present with deep vein thrombosis (DVT) or pulmonary embolism have this condition. The risk of developing a clot in a blood vessel depends on whether a person inherits one or two copies of the factor V Leiden mutation. Inheriting one copy of the mutation from a parent (heterozygous) increases by fourfold to eightfold the chance of developing a clot. People who inherit two copies of the mutation (homozygous), one from each parent, may have up to 80 times the usual risk of developing this type of blood clot. Considering that the risk of developing an abnormal blood clot averages about 1 in 1,000 per year in the general population, the presence of one copy of the factor V Leiden mutation increases that risk to between 4 in 1,000 to 8 in 1,000. Having two copies of the mutation may raise the risk as high as 80 in 1,000. It is unclear whether these individuals are at increased risk for "recurrent" venous thrombosis. While only 1 percent of people with factor V Leiden have two copies of the defective gene, these homozygous individuals have a more severe clinical condition. The presence of acquired risk factors for venous thrombosis—including smoking, use of estrogen-containing (combined) forms of hormonal contraception, and recent surgery—further increase the chance that an individual with the factor V Leiden mutation will develop DVT.
Women with factor V Leiden have a substantially increased risk of clotting in pregnancy (and on estrogen-containing birth control pills or hormone replacement) in the form of deep vein thrombosis and pulmonary embolism. They also may have a small increased risk of preeclampsia, may have a small increased risk of low birth weight babies, may have a small increased risk of miscarriage and stillbirth due to either clotting in the placenta, umbilical cord, or the fetus (fetal clotting may depend on whether the baby has inherited the gene) or influences the clotting system may have on placental development. Note that many of these women go through one or more pregnancies with no difficulties, while others may repeatedly have pregnancy complications, and still others may develop clots within weeks of becoming pregnant.