Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Risk factors for developing shin splints include:
- Excessive pronation at subtalar joint
- Excessively tight calf muscles (which can cause excessive pronation)
- Engaging the medial shin muscle in excessive amounts of eccentric muscle activity
- Undertaking high-impact exercises on hard, noncompliant surfaces (ex: running on asphalt or concrete)
- Smoking and low fitness level
While medial tibial stress syndrome is the most common form of shin splints, compartment syndrome and stress fractures are also common forms of shin splints. Females are 1.5 to 3.5 times more likely to progress to stress fractures from shin splints. This is due in part to females having a higher incidence of diminished bone density and osteoporosis.
The cause of snapping hip syndrome is not well understood, and confusion exists within the medical community regarding causation. Athletes appear to be at an enhanced risk for snapping hip syndrome due to repetitive and physically demanding movements.
In athletes such as ballet dancers, gymnasts, horse riders, track and field athletes and soccer players, military training, or any vigorous exerciser, repeated hip flexion leads to injury. In excessive weightlifting or running, the cause is usually attributed to extreme thickening of the tendons in the hip region. Snapping hip syndrome most often occurs in people who are 15 to 40 years old.
There are two main types of leg length inequalities:
- Structural differences are caused by the legs themselves being measurably different in length, usually due to differences in the length of the femur in the thigh or the tibia and fibula bones in the lower leg. This may be a birth defect or it may occur after a broken leg, serious infection, or local damage to one of the growth plates in a leg.
- The other, more common, type is seen when the legs themselves are the same length, but due to neuromuscular injuries in the pelvis or upper leg, one leg or hip is held higher and tighter than the other (hypertonicity in the musculature of the pelvis or leg). These unequally tightened muscles cause the legs to seem to be different lengths, even though careful measurement would show equal lengths of the actual leg. This is called leg length alignment asymmetry (LLAA) and can be seen while lying down.
Blount's disease occurs in young children and adolescents. The cause is unknown but is thought to be due to the effects of weight on the growth plate. The inner part of the tibia, just below the knee, fails to develop normally, causing angulation of the bone.
Unlike bowlegs, which tend to straighten as the child develops, Blount's disease is progressive and the condition worsens. It can cause severe bowing of the legs and can affect one or both legs.
This condition is more common among children of African ancestry. It is also associated with obesity, short stature, and early walking. There does not appear to be an obvious genetic factor.
Unequal leg length (also termed leg length inequality, LLI or leg length discrepancy, LLD) is where the legs are either different lengths or appear to be different lengths because of misalignment.
Extra-articular snapping hip syndrome is commonly associated with leg length difference (usually the long side is symptomatic), tightness in the iliotibial band (ITB) on the involved side, weakness in hip abductors and external rotators, poor lumbopelvic stability and abnormal foot mechanics (overpronation). Popping occurs when the thickened posterior aspect of the ITB or the anterior gluteus maximus rubs over the greater trochanter as the hip is extended.
The meniscal tear is the most common knee injury. A meniscal tear tends to be more frequent in sports that have rough contact or pivoting sports such as soccer. The meniscal tear is more common in males than females. The ratio is about two and a half males to one female. Males between the ages of thirty-one and forty tend to tear their meniscus more frequently than younger men. Females on the other hand, seem to be more likely to tear their meniscus between the ages of eleven and twenty. People who work in straining jobs such as construction or pro athletes are also more likely to have a meniscal tear because of all the different tensions of their knees. According to the United States National Library of Medicine, the isolated medial meniscal tear occurs more frequently than any other tear associated with the meniscus. The prevalence of meniscus tears is the same for both knees. In a few different studies the BMI of a person can have a greater effect on the frequency of a meniscus tear because having a higher BMI will result in more weight on the joints which can cause the knee to be non-aligned which causes more weight on the muscles resulting in an easier tear. In 2008 the U.S Department of Health and Human Services reported a combined total of 2,295 discharges for the principal diagnosis of tear of lateral cartilage/meniscus (836.0), tear of medial cartilage/meniscus (836.1), and tear of cartilage/meniscus (836.2). Females had a total of 53.49% discharges while males had 45.72%. Individuals between the ages of 45–68 years had an average of 31.73% discharges followed by age group 65–84 with 28.82%. The average length of stay for a patient diagnosed with torn menisci was 2.7 days for males and 3.7 days for females. There was a report of 6,941 hospital discharges for knee repair. Individuals between 18–44 years of age were among the highest with 37.37% total of discharges followed by the age group 45–64 with a percentage of 36.34%. Males had a slightly higher number of discharges (50.78%) than females (48.66%). The average length of stay for both male and female patients in a hospital setting was 3.1.
ITBS can result from one or more of the following: training habits, anatomical abnormalities, or muscular imbalances:
Training habits
- Spending long periods of time/regularly sitting in lotus posture in yoga. Esp beginners forcing the feet onto the top of the thighs
- Consistently running on a horizontally banked surface (such as the shoulder of a road or an indoor track) on which the downhill leg is bent slightly inward, causing extreme stretching of the band against the femur
- Inadequate warm-up or cool-down
- Excessive up-hill and down-hill running
- Positioning the feet "toed-in" to an excessive angle when cycling
- Running up and down stairs
- Hiking long distances
- Rowing
- Breaststroke
- Treading water
Abnormalities in leg/feet anatomy
- High or low arches
- Supination of the foot
- Excessive lower-leg rotation due to over-pronation
- Excessive foot-strike force
- Uneven leg lengths
- Bowlegs or tightness about the iliotibial band.
Muscle imbalance
- Weak hip abductor muscles
- Weak/non-firing multifidus muscle
- Uneven left-right stretching of the band, which could be caused by habits such as sitting cross-legged
Accidental or deliberate physical trauma may result in either a fracture, muscle bruising, or a contusion. It is the leading cause of a limp. Deliberate abuse is important to consider.
While ITBS pain can be acute, the iliotibial band can be rested, iced, compressed and elevated (RICE) to reduce pain and inflammation, followed by stretching. Massage therapy, and many of its modalities, can offer relief if symptoms arise.
A limp at one hospital emergency department was the presenting complaint in 4% of children. It occurs twice as commonly in boys as in girls.
Because wear on the hip joint traces to the structures that support it (the posture of the legs, and ultimately, the feet), proper fitting shoes with adequate support are important to preventing GTPS. For someone who has flat feet, wearing proper orthotic inserts and replacing them as often as recommended are also important preventive measures.
Strength in the core and legs is also important to posture, so physical training also helps to prevent GTPS. But it is equally important to avoid exercises that damage the hip.
While the exact cause is unknown, shin splints can be attributed to the overloading of the lower leg due to biomechanical irregularities resulting in an increase in stress exerted on the tibia. A sudden increase in intensity or frequency in activity level fatigues muscles too quickly to properly help absorb shock, forcing the tibia to absorb most of that shock. This stress is associated with the onset of shin splints. Muscle imbalance, including weak core muscles, inflexibility and tightness of lower leg muscles, including the gastrocnemius, soleus, and plantar muscles (commonly the flexor digitorum longus) can increase the possibility of shin splints. The pain associated with shin splints is caused from a disruption of Sharpey's fibres that connect the medial soleus fascia through the periosteum of the tibia where it inserts into the bone. With repetitive stress, the impact forces eccentrically fatigue the soleus and create repeated tibial bending or bowing, contributing to shin splints. The impact is made worse by running uphill, downhill, on uneven terrain, or on hard surfaces. Improper footwear, including worn-out shoes, can also contribute to shin splints.
Attenuated patella alta is an extremely rare condition affecting mobility and leg strength. It is characterized by an unusually small knee cap (patella) that develops out of and above the joint. Normally, as the knee cap sits in the joint, it is stimulated to growth by abrasion from the opposing bones. When not situated properly in the joint, the knee cap does not experience such stimulation and remains small and undeveloped. Note that the cartilage under and around the kneecap is eight times smoother than ice, so "abrasion" may not be the best term.
A similar condition, patella alta, can occur as the result of a sports injury, though the large majority of the time it is a congenital/developmental condition that is unrelated to trauma. A kneecap in an "alta" position sits above the "trochlear groove" and therefore is less stable. The "patellar tendon" that connects the kneecap to the tibia (shinbone)is elongated (longer than normal). This cannot happen by way of trauma, unless there has been a rupture of the tendon and a less-than-optimal surgical repair.
There has been only one documented case of the disorder noted from birth. In 1988, three-year-old Eric Rogstad of Minneapolis, Minnesota was discovered to suffer from the condition in both knees after several attempts by his parents and family physician to discover the cause of his abnormal difficulties with walking and running. After surgery and physical therapy, Eric gained the ability to walk and run without significant difficulty.
Insall Ratio: This ratio is calculated with the knee flexed to 30 degrees. It is the ratio of the length of the patella to the length of the patellar tendon. Normally this ratio is 1:1 but 20% variation represents patella alta or patella infera. Actually, the Insall-Salvati ratio can be measured at any degree of flexion, which is one reason for its popularity.
16-40 year-old males are responsible for the majority of hip dislocations. These hip dislocations are typically posterior, and a direct result of motor vehicle traffic collisions.
Tibia shaft fractures are the most common long bone fractures. They account for approximately 4% of the fractures seen in the Medicare population.
The cause of PFFD is uncertain. Two hypotheses have been advanced. The theory of sclerotome subtraction posits injury to neural crest cells that are the precursors to sensory nerves at the level of L4 and L5. Histologic studies of a fetus with unilateral PFFD have prompted an alternative hypothesis that PFFD is caused by a defect in maturation of chondrocytes (cartilage cells) at the growth plate. In either hypothesis, the agent causing the injury is usually not known. Thalidomide is known to cause PFFD when the mother is exposed to it in the fifth or sixth week of pregnancy, and it is speculated that exposure to other toxins during pregnancy may also be a cause. Other etiologies that have been suggested, but not proven, include anoxia, ischemia, radiation, infection, hormones, and mechanical force. PFFD occurs sporadically, and does not appear to be hereditary.
Failure to treat Blount's disease may lead to progressive deformity.Blount's disease may come back after surgery, especially in younger children. Because of the bowing, a leg-length discrepancy may result. This may result in disability if the discrepancy is significant (greater than 1 inch) and is not treated.
Trendelenburg's sign is found in people with weak or paralyzed abductor muscles of the hip, namely gluteus medius and gluteus minimus. It is named after the German surgeon Friedrich Trendelenburg.
The gluteus medius is very important during the stance phase of the gait cycle to maintain both hips at the same level. Moreover, one leg stance accounts for about 60% of the gait cycle. Furthermore, during the stance phase of the gait cycle, there is approximately three times the body weight transmitted to the hip joint. The hip abductors' action accounts for two thirds of that body weight. The Trendelenburg sign is said to be positive if, when standing on one leg, the pelvis drops on the side opposite to the stance leg to reduce the load by decreasing the lever arm. By reducing the lever arm, this decreases the work load on the hip abductors. The muscle weakness is present on the side of the stance leg. A Trendelenburg sign can occur when there is presence of a muscular dysfunction (weakness of the gluteus medius or minimus) or when someone is experiencing pain. The body is not able to maintain the center of gravity on the side of the stance leg. Normally, the body shifts the weight to the stance leg, allowing the shift of the center of gravity and consequently stabilizing or balancing the body. However, in this scenario, when the patient/person lifts the opposing leg, the shift is not created and the patient/person cannot maintain balance leading to instability.
Tear of a meniscus is a common injury in many sports. The menisci hold 30–50% of the body load in standing position. Some sports where a meniscus tear is common are American football, association football, ice hockey and tennis. Regardless of what the activity is, it is important to take the correct precautions to prevent a meniscus tear from happening.
A detailed history is the first step of a lameness exam.
1. Age: Foals are more likely to have infectious causes of lameness (septic arthritis). Horses just starting training may be lame due to a developmental orthopedic disease, such as osteochondrosis. Older animals are more likely to experience osteoarthritis.
2. Breed: Breed-specific diseases, such as HYPP, can be ruled out. Additionally, some breeds or types are more prone to certain types of lameness.
3. Discipline: Certain lamenesses are associated with certain uses. For example, racehorses are more likely to have fatigue-related injuries such as stress fractures and injury to the flexor tendons, while western show horses are more likely to suffer from navicular syndrome and English sport horses are more likely to have osteoarthritis or injury to the suspensory ligament.
4. Past history of lameness: An old injury may be re-injured. In the case of progressive disease, such as osteoarthritis, a horse will often experience recurrent lameness that must be managed. Shifting lameness may suggest a bilateral injury or infectious cause of lameness.
5. Duration and progression the lameness: Acute injury is more common with soft tissue injury. Chronic, progressive disease is more common in cases such as osteoarthritis and navicular disease.
6. Recent changes in management: such as turn-out, exercise level, diet, or shoeing.
7. Effect of exercise on degree of lameness.
8. Any treatment implemented, including rest.
Coxa vara is a deformity of the hip, whereby the angle between the head and the shaft of the femur is reduced to less than 120 degrees. This results in the leg being shortened, and the development of a limp. It is commonly caused by injury, such as a fracture. It can also occur when the bone tissue in the neck of the femur is softer than normal, causing it to bend under the weight of the body. This may either be congenital or the result of a bone disorder. The most common cause of coxa vara is either congenital or developmental. Other common causes include metabolic bone diseases (e.g. Paget's disease of bone), post-Perthes deformity, osteomyelitis, and post traumatic (due to improper healing of a fracture between the greater and lesser trochanter). Shepherd's Crook deformity is a severe form of coxa vara where the proximal femur is severely deformed with a reduction in the neck shaft angle beyond 90 degrees. It is most commonly a sequela of osteogenesis imperfecta, Pagets disease, osteomyelitis, tumour and tumour-like conditions (e.g. fibrous dysplasia).
Coxa vara can happen in cleidocranial dysostosis.
Presence at birth is extremely rare and associated with other congenital anomalies such as proximal femoral focal deficiency, fibular hemimelia or anomalies in other part of the body such as cleidocranial dyastosis. The femoral deformity is present in the subtrochantric area where the bone is bent. The cortices are thickened and may be associated with overlying skin dimples. External rotation of the femur with valgus deformity of knee may be noted. This condition does not resolve and requires surgical management. Surgical management includes valgus osteotomy to improve hip biomechanics and length and rotational osteotomy to correct retroversion and lengthening.
Damage can occur to the ligaments surrounding and bridging the pubic joint (symphysis) as a result of the hormone relaxin, which is secreted around the time of birth to soften the pelvic ligaments for labor. At this time repetitive stress or falling, tripping, and slipping can injure ligaments more easily. The hormone usually disappears after childbirth and the ligaments become strong again. In some women the weakness persists, and activities such as carrying their baby or stepping up even a small step can cause a slight but continuous separation or shearing in the ligaments of the symphysis where they attach to the joint surfaces, even causing lesions in the fibrocartilage and pubic bones. Symptoms include one or more of the following: pain in the pubic area, hips, lower back, and thighs. This can take months (or even years) to go away.
X-rays taken during the early stages of osteitis pubis can be misleading - pain may be felt, but the damage doesn't appear on the films unless stork views (i.e. standing on one leg) are obtained. As the process continues and progresses, later pictures will show evidence of bony erosion in the pubic bones. Osteitis pubis can also be associated with pelvic girdle pain.
Children younger than 6 have the best prognosis, since they have time for the dead bone to revascularize and remodel, with a good chance that the femoral head will recover and remain spherical after resolution of the disease. Children who have been diagnosed with Perthes' disease after the age of 10 are at a very high risk of developing osteoarthritis and coxa magna. When an LCP disease diagnosis occurs after age 8, a better outcome results with surgery rather than nonoperative treatments. Shape of femoral head at the time when Legg-Calve Perthes disease heals is the most important determinant of risk for degenerative arthritis; hence, the shape of femoral head and congruence of hip are most useful outcome measures.