Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
People with diabetes mellitus are at higher risk for any kind of peripheral neuropathy, including ulnar nerve entrapments.
Cubital tunnel syndrome is more common in people who spend long periods of time with their elbows bent, such as when holding a telephone to the head. Flexing the elbow while the arm is pressed against a hard surface, such as leaning against the edge of a table, is a significant risk factor. The use of vibrating tools at work or other causes of repetitive activities increase the risk, including throwing a baseball.
Damage to or deformity of the elbow joint increases the risk of cubital tunnel syndrome. Additionally, people who have other nerve entrapments elsewhere in the arm and shoulder are at higher risk for ulnar nerve entrapment. There is some evidence that soft tissue compression of the nerve pathway in the shoulder by a bra strap over many years can cause symptoms of ulnar neuropathy, especially in very large-breasted women.
Anything compromising the tunnel of the posterior tibial nerve proves significant in the risk of causing TTS. Neuropathy can occur in the lower limb through many modalities, some of which include obesity and inflammation around the joints. By association, this includes risk factors such as RA, compressed shoes, pregnancy, diabetes and thyroid diseases
The international debate regarding the relationship between CTS and repetitive motion in work is ongoing. The Occupational Safety and Health Administration (OSHA) has adopted rules and regulations regarding cumulative trauma disorders. Occupational risk factors of repetitive tasks, force, posture, and vibration have been cited.
The relationship between work and CTS is controversial; in many locations, workers diagnosed with carpal tunnel syndrome are entitled to time off and compensation.
Some speculate that carpal tunnel syndrome is provoked by repetitive movement and manipulating activities and that the exposure can be cumulative. It has also been stated that symptoms are commonly exacerbated by forceful and repetitive use of the hand and wrists in industrial occupations, but it is unclear as to whether this refers to pain (which may not be due to carpal tunnel syndrome) or the more typical numbness symptoms.
A review of available scientific data by the National Institute for Occupational Safety and Health (NIOSH) indicated that job tasks that involve highly repetitive manual acts or specific wrist postures were associated with incidents of CTS, but causation was not established, and the distinction from work-related arm pains that are not carpal tunnel syndrome was not clear. It has been proposed that repetitive use of the arm can affect the biomechanics of the upper limb or cause damage to tissues. It has also been proposed that postural and spinal assessment along with ergonomic assessments should be included in the overall determination of the condition. Addressing these factors has been found to improve comfort in some studies. A 2010 survey by NIOSH showed that 2/3 of the 5 million carpal tunnel cases in the US that year were related to work. Women have more work-related carpal tunnel syndrome than men.
Speculation that CTS is work-related is based on claims such as CTS being found mostly in the working adult population, though evidence is lacking for this. For instance, in one recent representative series of a consecutive experience, most patients were older and not working. Based on the claimed increased incidence in the workplace, arm use is implicated, but the weight of evidence suggests that this is an inherent, genetic, slowly but inevitably progressive idiopathic peripheral mononeuropathy.
As stated earlier, musculoskeletal disorders can cost up to $15–$20 billion in direct costs or $45–$55 billion in indirect expenses. This is about $135 million a day Tests that confirm or correct TTS require expensive treatment options like x-rays, CT-scans, MRI and surgery. 3 former options for TTS detect and locate, while the latter is a form of treatment to decompress tibial nerve pressure Since surgery is the most common form of TTS treatment, high financial burden is placed upon those diagnosed with the rare syndrome.
Most people relieved of their carpal tunnel symptoms with conservative or surgical management find minimal residual or "nerve damage". Long-term chronic carpal tunnel syndrome (typically seen in the elderly) can result in permanent "nerve damage", i.e. irreversible numbness, muscle wasting, and weakness. Those that undergo a carpal tunnel release are nearly twice as likely as those not having surgery to develop trigger thumb in the months following the procedure.
While outcomes are generally good, certain factors can contribute to poorer results that have little to do with nerves, anatomy, or surgery type. One study showed that mental status parameters or alcohol use yields much poorer overall results of treatment.
Recurrence of carpal tunnel syndrome after successful surgery is rare.
Among the causes of ulnar neuropathy are the following-
Much more commonly, ulnar neuropathy is caused by overuse of the triceps muscle and repetitive stress combined with poor ergonomics. Overused and hypertonic triceps muscle causes inflammation in the tendon and adhesions with the connective tissue surrounding that tendon and muscle. These in turn impinge on or trap the ulnar nerve. Ulnar neuropathy resulting from repetitive stress is amenable to massage and can usually be fully reversed without cortisone or surgery.
Center for Occupational and Environmental Neurology , Baltimore, MD has this to say:
“Repetitive Strain Injuries (RSI) refers to many different diagnoses of the neck/shoulder, arm, and wrist/hand area usually associated with work-related ergonomic stressors. Other terms used for Repetitive Strain Injuries are overuse syndrome, musculoskeletal disorders, and cumulative trauma disorders. Some of the more common conditions under these headings include:
Cubital Tunnel Syndrome-compression of the ulnar nerve in the cubital tunnel at the elbow.”
Workers in certain fields are at risk of repetitive strains. Most occupational injuries are musculoskeletal disorders, and many of these are caused by cumulative trauma rather than a single event. Miners and poultry workers, for example, must make repeated motions which can cause tendon, muscular, and skeletal injuries.
In regards to the pathophysiology of ulnar neuropathy:the axon, and myelin can be affected. Within the axon, fascicles to individual muscles could be involved, with subsequent motor unit loss and amplitude decrease. Conduction block means impaired transmission via a part of the nerve. Conduction block can mean myelin damage to the involved area, slowing of conduction or significant spreading out of the temporal profile of the response with axonal integrity is a hallmark of demyelination.
The site and type of brachial plexus injury determine the prognosis. Avulsion and rupture injuries require timely surgical intervention for any chance of recovery. For milder injuries involving buildup of scar tissue and for neurapraxia, the potential for improvement varies, but there is a fair prognosis for spontaneous recovery, with a 90–100% return of function.
Most patients diagnosed with cubital tunnel syndrome have advanced disease (atrophy, static numbness, weakness) that might reflect permanent nerve damage that will not recover after surgery. When diagnosed prior to atrophy, weakness or static numbness, the disease can be arrested with treatment. Mild and intermittent symptoms often resolve spontaneously.
Brachial plexus injury is found in both children and adults, but there is a difference between children and adults with BPI.
Repetitive strain injury (RSI) and associative trauma orders are umbrella terms used to refer to several discrete conditions that can be associated with repetitive tasks, forceful exertions, vibrations, mechanical compression, or sustained/awkward positions. Examples of conditions that may sometimes be attributed to such causes include edema, tendinosis (or less often tendinitis), carpal tunnel syndrome, cubital tunnel syndrome, De Quervain syndrome, thoracic outlet syndrome, intersection syndrome, golfer's elbow (medial epicondylitis), tennis elbow (lateral epicondylitis), trigger finger (so-called stenosing tenosynovitis), radial tunnel syndrome, ulnar tunnel syndrome, and focal dystonia.
Since the 1970s there has been a worldwide increase in RSIs of the arms, hands, neck, and shoulder attributed to the widespread use of typewriters/computers in the workplace that require long periods of repetitive motions in a fixed posture.
Anatomically, damage to the axillary nerve or suppression of it causes the palsy. This suppression, referred to as entrapment, causes the nerve pathway to become smaller and impulses cannot move through the nerve as easily. Furthermore, if trauma causes damage to the myelin sheath, or injures the nerve another way, this will also reduce the ability of nerve impulse flow.
Usually, an outside force is acting to suppress the nerve, or cause nerve damage. Most commonly, shoulder dislocation or fractions in the shoulder can cause the palsy. Contact sports such as football and hockey can cause the injury Other cases have been caused by repeated crutch pressure or injuries accidentally caused by health professionals (iatrogenesis). Furthermore, following an anterior shoulder operation; damage to the axillary nerve is possible and has been documented by various surgeons, thus causing axillary nerve palsy. Other possible causes include: deep infection, pressure from a cast or splint, fracture of the humerus, or nerve disorders in which the nerves become inflamed.
There are rare causes of axillary nerve palsy that do occur. For instance, axillary nerve palsy can occur after there is blunt trauma in the shoulder area without any sort of dislocation or fracture. Examples of this blunt trauma may include: being hit by heavy an object, falling on shoulder, a strong blow while participating in boxing, or motor vehicle accidents. Another rare cause of axillary nerve palsy can occur after utilizing a side birthing position. When the patient lies on their side for a strenuous amount of time, they can develop axillary nerve palsy. This rare complication of labor can occur due to the prolonged pressure on the axillary nerve while in a side-birth position. Some patients who are diagnosed with nodular fasciitis may develop axillary nerve palsy if the location of the rapid growth is near the axilla. In the case of Nodular Fasciitis, a fibrous band or the growth of a schwannoma can both press against the nerve, causing axillary nerve palsy.
An injury to the axillary nerve normally occurs from a direct impact of some sort to the outer arm, though it can result from injuring a shoulder via dislocation or compression of the nerve. The axillary nerve comes from the posterior cord of the brachial plexus at the coracoid process and provides the motor function to the deltoid and teres minor muscles. An EMG can be useful in determining if there is an injury to the axillary nerve. The largest numbers of axillary nerve palsies arise due to stretch injuries which are caused by blunt trauma or iatrogenesis. Axillary nerve palsy is characterized by the lack of shoulder abduction greater than 30 degrees with or without the loss of sense in the low two thirds of the shoulder. Normally the patients that have axillary nerve palsy are involved in blunt trauma and have a number of shoulder injuries. Surgery is not always required to solve the problem (information from: Midha, Rajiv, Zager, Eric. Surgery of Peripheral Nerves: A Case-Based Approach. Thieme Medical Publishers, Inc. 2008.)
There are many ways to acquire radial nerve palsy.
The term "Saturday Night Palsy" refers to an injury to the radial nerve in the spiral groove of the humerus caused while sleeping in a position that would under normal circumstances cause discomfort. It can occur when a person falls asleep while heavily medicated and/or under the influence of alcohol with the underside of the arm compressed by a bar edge, bench, chair back, or like object. Sleeping with the head resting on the arm can also cause radial nerve palsy.
Breaking the humerus and deep puncture wounds can also cause the condition.
Posterior interosseus palsy is distinguished from radial nerve palsy by the preservation of elbow extension.
Symptoms vary depending on the severity and location of the trauma; however, common symptoms include wrist drop (the inability to extend the wrist upward when the hand is palm down); numbness of the back of the hand and wrist, specifically over the first web space which is innervated by the radial nerve; and inability to voluntarily straighten the fingers or extend the thumb, which is performed by muscles of the extensor group, all of which are primarily innervated by the radial nerve. Loss of wrist extension is due to paralysis of the posterior compartment of forearm muscles; although the elbow extensors are also innervated by the radial nerve, their innervation is usually spared because the compression occurs below, distal, to the level of the axillary nerve, which innervates the long head of the triceps, and the upper branches of the radial nerve that innervate the remainder of the Triceps.
Ulnar tunnel syndrome, also known as Guyon's canal syndrome or Handlebar palsy, is caused by entrapment of the ulnar nerve in the Guyon canal as it passes through the wrist. Symptoms usually begin with a feeling of pins and needles in the ring and little fingers before progressing to a loss of sensation and/or impaired motor function of the intrinsic muscles of the hand which are innervated by the ulnar nerve. Ulnar tunnel syndrome is commonly seen in regular cyclists due to prolonged pressure of the Guyon's canal against bicycle handlebars. Another very common cause of sensory loss in the ring and pink finger is due to ulnar nerve entrapment at the Cubital Tunnel near the elbow, which is known as Cubital Tunnel Syndrome.
Radial nerve dysfunction is also known as radial neuropathy or radial mononeuropathy. It is a problem associated with the radial nerve resulting from injury consisting of acute trauma to the radial nerve. The damage has sensory consequences, as it interferes with the radial nerve's innervation of the skin of the posterior forearm, lateral three digits, and the dorsal surface of the side of the palm. The damage also has motor consequences, as it interferes with the radial nerve's innervation of the muscles associated with the extension at the elbow, wrist, and figers, as well the supination of the forearm. This type of injury can be difficult to localize, but relatively common, as many ordinary occurrences can lead to the injury and resulting mononeuropathy. One out of every ten patients suffering from radial nerve dysfunction do so because of a fractured humerus.
The radial nerve is one of the major nerves of the upper limb. It innervates all of the muscles in the extensor compartments of the arm. Injury to the nerve can therefore result in significant functional deficit for the individual. It is vulnerable to injury with fractures of the humeral shaft as it lies in very close proximity to the bone (it descends within the spiral groove on the posterior aspect of the humerus). Characteristic findings following injury will be as a result of radial nerve palsy (e.g. weakness of wrist/finger extension and sensory loss over the dorsum of the hand).
The vast majority of radial nerve palsies occurring as a result of humeral shaft fractures are neuropraxias (nerve conduction block as a result of traction or compression of the nerve), these nerve palsies can be expected to recover over a period of months. A minority of palsies occur as a result of more significant axonotmeses (division of the axon but preservation of the nerve sheath) or the even more severe neurotmeses (division of the entire nerve structure). As a result, it is important for individuals sustaining a Holstein–Lewis injury to be carefully followed up as if there is no evidence of return of function to the arm after approximately three months, further investigations and possibly, nerve exploration or repair may be required. The exception to this rule is if the fracture to the humerus requires fixing in the first instance. In that case, the nerve should be explored at the same time that fixation is performed.
Ulnar tunnel syndrome may be characterized by the location or zone within the Guyon's canal at which the ulnar nerve is compressed. The nerve divides into a superficial sensory branch and a deeper motor branch in this area. Thus, Guyon's canal can be separated into three zones based on which portion of the ulnar nerve are involved. The resulting syndrome results in either muscle weakness or impaired sensation in the ulnar distribution.
Zone 2 type syndromes are most common, while Zone 3 are least common.
Anterior interosseous syndrome or Kiloh-Nevin syndrome I is a medical condition in which damage to the anterior interosseous nerve (AIN), a motor branch of the median nerve, causes pain in the forearm and a characteristic weakness of the pincer movement of the thumb and index finger.
Most cases of AIN syndrome are due to a transient neuritis, although compression of the AIN can happen. Trauma to the median nerve have also been reported as a cause of AIN syndrome.
Although there is still controversy among upper extremity surgeons, AIN syndrome is now regarded as a neuritis (inflammation of the nerve) in most cases; this is similar to Parsonage–Turner syndrome. Although the exact etiology is unknown, there is evidence that it is caused by an immune mediated response.
Studies are limited, and no randomized controlled trials have been performed regarding the treatment of AIN syndrome. While the natural history of AIN syndrome is not fully understood, studies following patients who have been treated without surgery show that symptoms can resolve starting as late as one year after onset. Other retrospective studies have shown that there is no difference in outcome in surgically versus nonsurgically treated patients. Surgical decompression is rarely indicated in AIN syndrome. Indications for considering surgery include a known space-occupying lesion that is compressing the nerve (a mass) and persistent symptoms beyond 1 year of conservative treatment.
A nerve may be compressed by prolonged or repeated external force, such as sitting with one's arm over the back of a chair (radial nerve), frequently resting one's elbows on a table (ulnar nerve), or an ill-fitting cast or brace on the leg (peroneal nerve). Part of the patient's body can cause the compression and the term "entrapment neuropathy" is used particularly in this situation. The offending structure may be a well-defined lesion such as a tumour (for example a lipoma, neurofibroma or metastasis), a ganglion cyst or a haematoma. Alternatively, there may be expansion of the tissues around a nerve in a space where there is little room for this to occur, as is often the case in carpal tunnel syndrome. This may be due to weight gain or peripheral oedema (especially in pregnancy), or to a specific condition such as acromegaly, hypothyroidism or scleroderma and psoriasis.
Some conditions cause nerves to be particularly susceptible to compression. These include diabetes, in which the blood supply to the nerves is already compromised, rendering the nerve more sensitive to minor degrees of compression. The genetic condition HNPP is a much rarer cause.
The lateral femoral cutaneous nerve most often becomes injured by entrapment or compression where it passes between the upper front hip bone (ilium) and the inguinal ligament near the attachment at the anterior superior iliac spine (the upper point of the hip bone). Less commonly, the nerve may be entrapped by other anatomical or abnormal structures, or damaged by diabetic or other neuropathy or trauma such as from seat belt injury in an accident.
The nerve may become painful over a period of time as weight gain makes underwear, belting or the waistband of pants gradually exert higher levels of pressure. Pain may be acute and radiate into the rib cage, and into the groin, thigh, and knee. Alternately, weight loss or aging may remove protective fat layers under the skin, so the nerve can compress against underwear, outer clothing, and—most commonly— by belting. Long periods of standing or leg exercise that increases tension on the inguinal ligament may also cause pressure.
Morton's neuroma (also known as Morton neuroma, Morton's metatarsalgia, Intermetatarsal neuroma and Intermetatarsal space neuroma.) is a benign neuroma of an intermetatarsal plantar nerve, most commonly of the second and third intermetatarsal spaces (between 2nd−3rd and 3rd−4th metatarsal heads), which results in the entrapment of the affected nerve. The main symptoms are pain and/or numbness, sometimes relieved by removing narrow or high-heeled footwear. Sometimes symptoms are relieved by wearing non-constricting footwear.
Some sources claim that entrapment of the plantar nerve because of compression between the metatarsal heads, as originally proposed by Morton, is highly unlikely, because the plantar nerve is on the plantar side of the transverse metatarsal ligament and thus does not come in contact with the metatarsal heads. It is more likely that the transverse metatarsal ligament is the cause of the entrapment.
Despite the name, the condition was first correctly described by a chiropodist named Durlacher, and although it is labeled a "neuroma", many sources do not consider it a true tumor, but rather a perineural fibroma (fibrous tissue formation around nerve tissue).
Axillary nerve palsy is a neurological condition in which the axillary (also called circumflex) nerve has been damaged by shoulder dislocation. It can cause weak deltoid and sensory loss below the shoulder. Since this is a problem with just one nerve, it is a type of Peripheral neuropathy called mononeuropathy. Of all brachial plexus injuries, axillary nerve palsy represents only .3% to 6% of them.
Injuries of the forearm with compression of the nerve is the most common cause: examples include
supracondylar fractures, often associated with haemorrhage into the deep musculature;
injury secondary to open reduction of a forearm fracture; or dislocation of the elbow.
Direct trauma from a penetrating injury such as a stab wound is a common cause for the syndrome.
Fibrous bands or arcuate (curved) ligaments may entrap the median as well as the anterior interosseous nerves, in which case a patient may experience numbness as well as pain.
Rheumatoid disease and gouty arthritis may be a predisposing factor in anterior interosseous nerve entrapment.
Very similar syndromes can be caused by more proximal lesions, such as brachial plexus neuritis.
Anterior interosseous nerve entrapment or compression injury remains a difficult clinical diagnosis because it is mainly a motor nerve and the syndrome is often mistaken for finger ligamentous injury.
Sciatic nerve injury occurs between 0.5% and 2.0% of the time during total hip arthroplasty. Sciatic nerve palsy is a complication of total hip arthroplasty with an incidence of 0.2% to 2.8% of the time, or with an incidence of 1.7% to 7.6% following revision. Following the procedure, in rare cases, a screw, broken piece of trochanteric wire, fragment of methyl methacrylate bone cement, or Burch-Schneider metal cage can impinge on the nerve; this can cause sciatic nerve palsy which may resolve after the fragment is removed and the nerve freed. The nerve can be surrounded in oxidized regenerated cellulose to prevent further scarring. Sciatic nerve palsy can also result from severe spinal stenosis following the procedure, which can be addressed by spinal decompression surgery. It is unclear if inversion therapy is able to decompress the sacral vertebrae, it may only work on the lumbar aspects of the sciatic nerves.
Sciatic nerve injury may also occur from improperly performed injections into the buttock, and may result in sensory loss.