Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
A number of studies have shown that tobacco use is a significant factor in miscarriages among pregnant smokers, and that it contributes to a number of other threats to the health of the fetus. Smoking and pregnancy, combined, cause twice the risk of premature rupture of membranes, placental abruption and placenta previa. Also, it causes 30% higher odds of the baby being born prematurely.
Medical organizations strongly discourage drinking alcohol during pregnancy. Alcohol passes easily from the mother's bloodstream through the placenta and into the bloodstream of the fetus, which interferes with brain and organ development. Alcohol can affect the fetus at any stage during pregnancy, but the level of risk depends on the amount and frequency of alcohol consumed. Regular heavy drinking and binge drinking (four or more drinks on any one occasion) pose the greatest risk for harm, but lesser amounts can cause problems as well. There is no known safe amount or safe time to drink during pregnancy. Every year about 12,000 babies are born with FAS in the US. Around 60,000 are born with some kind of alcohol-related abnormalities and developmental issues. Despite this 1 in 10 pregnant women report drinking alcohol, 1 in 33 binge drink.
Prenatal alcohol exposure can lead to fetal alcohol spectrum disorders (FASDs). The most severe form of FASD is fetal alcohol syndrome (FAS). Problems associated with FASD include facial anomalies, low birth weight, stunted growth, small head size, delayed or uncoordinated motor skills, hearing or vision problems, learning disabilities, behavior problems, and inappropriate social skills compared to same-age peers. Those affected are more likely to have trouble in school, legal problems, participate in high-risk behaviors, and develop substance use disorders themselves. It's also been shown that alcohol impairs global motion perception if consumed during the prenatal development period. It was also shown that with an increasing amount of alcohol exposure there is a correlation with an increase in the impairment of global motion perception.
A pregnant woman may have intercurrent diseases, defined as disease not directly caused by the pregnancy, but that may become worse or be a potential risk to the pregnancy.
- Diabetes mellitus and pregnancy deals with the interactions of diabetes mellitus (not restricted to gestational diabetes) and pregnancy. Risks for the child include miscarriage, growth restriction, growth acceleration, fetal obesity (macrosomia), polyhydramnios (too much amniotic fluid), and birth defects.
- Thyroid disease in pregnancy can, if uncorrected, cause adverse effects on fetal and maternal well-being. The deleterious effects of thyroid dysfunction can also extend beyond pregnancy and delivery to affect neurointellectual development in the early life of the child. Demand for thyroid hormones is increased during pregnancy which may cause a previously unnoticed thyroid disorder to worsen.
- Untreated celiac disease can cause spontaneous abortion (miscarriage), intrauterine growth restriction, small for gestational age, low birthweight and preterm birth. Often reproductive disorders are the only manifestation of undiagnosed celiac disease and most cases are not recognized. Complications or failures of pregnancy cannot be explained simply by malabsorption, but by the autoimmune response elicited by the exposure to gluten, which causes damage to the placenta. The gluten-free diet avoids or reduces the risk of developing reproductive disorders in pregnant women with celiac disease. Also, pregnancy can be a trigger for the development of celiac disease in genetically susceptible women who are consuming gluten.
- Systemic lupus erythematosus in pregnancy confers an increased rate of fetal death "in utero," spontaneous abortion, and of neonatal lupus.
- Hypercoagulability in pregnancy is the propensity of pregnant women to develop thrombosis (blood clots). Pregnancy itself is a factor of hypercoagulability (pregnancy-induced hypercoagulability), as a physiologically adaptive mechanism to prevent "post partum" bleeding. However, in combination with an underlying hypercoagulable states, the risk of thrombosis or embolism may become substantial.
Intrauterine exposure to environmental toxins in pregnancy has the potential to cause adverse effects on the development of the embryo/fetus and to cause pregnancy complications. Air pollution has been associated with low birth weight infants. Conditions of particular severity in pregnancy include mercury poisoning and lead poisoning. To minimize exposure to environmental toxins, the "American College of Nurse-Midwives" recommends: checking whether the home has lead paint, washing all fresh fruits and vegetables thoroughly and buying organic produce, and avoiding cleaning products labeled "toxic" or any product with a warning on the label.
Pregnant women can also be exposed to toxins in the workplace, including airborne particles. The effects of wearing N95 filtering facepiece respirators are similar for pregnant women as non-pregnant women, and wearing a respirator for one hour does not affect the fetal heart rate.
A number of factors have been identified that are linked to a higher risk of a preterm birth such as being less than 18 years of age. Maternal height and weight can play a role.
Further, in the US and the UK, black women have preterm birth rates of 15–18%, more than double than that of the white population. Filipinos are also at high risk of premature birth, and it is believed that nearly 11-15% of Filipinos born in the U.S. (compared to other Asians at 7.6% and whites at 7.8%) are premature. Filipinos being a big risk factor is evidenced with the Philippines being the 8th highest ranking in the world for preterm births, the only non-African country in the top 10. This discrepancy is not seen in comparison to other Asian groups or Hispanic immigrants and remains unexplained.
Pregnancy interval makes a difference as women with a six-month span or less between pregnancies have a two-fold increase in preterm birth. Studies on type of work and physical activity have given conflicting results, but it is opined that stressful conditions, hard labor, and long hours are probably linked to preterm birth.
A history of spontaneous (i.e., miscarriage) or surgical abortion has been associated with a small increase in the risk of preterm birth, with an increased risk with increased number of abortions, although it is unclear whether the increase is caused by the abortion or by confounding risk factors (e.g., socioeconomic status). Increased risk has not been shown in women who terminated their pregnancies medically. Pregnancies that are unwanted or unintended are also a risk factor for preterm birth.
Adequate maternal nutrition is important. Women with a low BMI are at increased risk for preterm birth. Further, women with poor nutrition status may also be deficient in vitamins and minerals. Adequate nutrition is critical for fetal development and a diet low in saturated fat and cholesterol may help reduce the risk of a preterm delivery. Obesity does not directly lead to preterm birth; however, it is associated with diabetes and hypertension which are risk factors by themselves. To some degree those individuals may have underlying conditions (i.e., uterine malformation, hypertension, diabetes) that persist.
Women with celiac disease have an increased risk of the development of preterm birth. The risk of preterm birth is more elevated when celiac disease remains undiagnosed and untreated.
Marital status is associated with risk for preterm birth. A study of 25,373 pregnancies in Finland revealed that unmarried mothers had more preterm deliveries than married mothers (P=0.001). Pregnancy outside of marriage was associated overall with a 20% increase in total adverse outcomes, even at a time when Finland provided free maternity care. A study in Quebec of 720,586 births from 1990 to 1997 revealed less risk of preterm birth for infants with legally married mothers compared with those with common-law wed or unwed parents.
Genetic make-up is a factor in the causality of preterm birth. Genetics has been a big factor into why Filipinos have a high risk of premature birth as the Filipinos have a large prevalence of mutations that help them be predisposed to premature births. An intra- and transgenerational increase in the risk of preterm delivery has been demonstrated. No single gene has been identified.
Subfertility is associated with preterm birth. Couples who have tried more than 1 year versus those who have tried less than 1 year before achieving a spontaneous conception have an adjusted odds ratio of 1.35 (95% confidence interval 1.22-1.50) of preterm birth. Pregnancies after IVF confers a greater risk of preterm birth than spontaneous conceptions after more than 1 year of trying, with an adjusted odds ratio of 1.55 (95% CI 1.30-1.85).
According to current recommendations by the WHO, US CDC and U.S. Department of Health and Human Services (DHHS), all individuals with HIV should begin ART. The recommendation is stronger under the following conditions:
- CD4 count below 350 cells/mm
- High viral load (>100,000 copies/ml)
- Progression of HIV to AIDS
- Development of HIV-related infections and illnesses
- Pregnancy
Women are encouraged to begin treatment as soon as they are diagnosed with HIV. If they are diagnosed prior to pregnancy, they should continue with ART during the pregnancy. If the diagnosis of HIV is made during the pregnancy, ART should be initiated immediately.
Although it is very uncommon, women undergoing surgical abortion after 18 weeks gestation sometimes give birth to a fetus that may survive briefly. Longer term survival is possible after 22 weeks.
If medical staff observe signs of life, they may be required to provide care: emergency medical care if the child has a good chance of survival and palliative care if not. Induced fetal demise before termination of pregnancy after 20–21 weeks gestation is recommended to avoid this.
Death following live birth caused by abortion is given the ; data are identified as either fetus or newborn. Between 1999 and 2013, in the U.S., the CDC recorded 531 such deaths for newborns, approximately 4 per 100,000 abortions.
The rate of cancer during pregnancy is 0.02–1%, and in many cases, cancer of the mother leads to consideration of abortion to protect the life of the mother, or in response to the potential damage that may occur to the fetus during treatment. This is particularly true for cervical cancer, the most common type of which occurs in 1 of every 2,000–13,000 pregnancies, for which initiation of treatment "cannot co-exist with preservation of fetal life (unless neoadjuvant chemotherapy is chosen)". Very early stage cervical cancers (I and IIa) may be treated by radical hysterectomy and pelvic lymph node dissection, radiation therapy, or both, while later stages are treated by radiotherapy. Chemotherapy may be used simultaneously. Treatment of breast cancer during pregnancy also involves fetal considerations, because lumpectomy is discouraged in favor of modified radical mastectomy unless late-term pregnancy allows follow-up radiation therapy to be administered after the birth.
Exposure to a single chemotherapy drug is estimated to cause a 7.5–17% risk of teratogenic effects on the fetus, with higher risks for multiple drug treatments. Treatment with more than 40 Gy of radiation usually causes spontaneous abortion. Exposure to much lower doses during the first trimester, especially 8 to 15 weeks of development, can cause intellectual disability or microcephaly, and exposure at this or subsequent stages can cause reduced intrauterine growth and birth weight. Exposures above 0.005–0.025 Gy cause a dose-dependent reduction in IQ. It is possible to greatly reduce exposure to radiation with abdominal shielding, depending on how far the area to be irradiated is from the fetus.
The process of birth itself may also put the mother at risk. "Vaginal delivery may result in dissemination of neoplastic cells into lymphovascular channels, haemorrhage, cervical laceration and implantation of malignant cells in the episiotomy site, while abdominal delivery may delay the initiation of non-surgical treatment."
The data presented is for comparative and illustrative purposes only, and may have been superseded by updated data.
Pregnant women with HIV may still receive the trivalent inactivated influenza vaccine and the tetanus, diphtheria, and pertussis (Tdap) vaccination during pregnancy.
Many patients who are HIV positive also have other health conditions known as comorbidities. Hepatitis B, hepatitis C, tuberculosis and injection drug use are some of the most common comorbidities associated with HIV. Women who screen positive for HIV should also be tested for these conditions so that they may be adequately treated or controlled during the pregnancy. The comorbidities may have serious adverse effects on the mother and child during pregnancy, so it is extremely important to identify them early during the pregnancy.
A number of the effects that had been thought after early studies to be attributable to prenatal exposure to cocaine are actually due partially or wholly to other factors, such as exposure to other substances (including tobacco, alcohol, or marijuana) or to the environment in which the child is raised.
PCE is very difficult to study because of a variety of factors that may confound the results: pre- and postnatal care may be poor; the pregnant mother and child may be malnourished; the amount of cocaine a mother takes can vary; she may take a variety of drugs during pregnancy in addition to cocaine; measurements for detecting deficits may not be sensitive enough; and results that are found may only last a short time. Studies differ in how they define heavy or light cocaine use during pregnancy, and the time period of exposure during pregnancy on which they focus (e.g. first, second, or third trimester. Drug use by mothers puts children at high risk for exposure to toxic or otherwise dangerous environments, and PCE does not present much risk beyond these risk factors. PCE is clustered with other risk factors to the child, such as physical abuse and neglect, domestic violence, and prenatal exposure to other substances. Such environmental factors are known to adversely affect children in the same areas being studied with respect to PCE.
Most women who use cocaine while pregnant use other drugs too; one study found that 93% of those who use cocaine or opiates also use tobacco, marijuana, or alcohol. When researchers control for use of other drugs, many of the seeming effects of cocaine on head size, birth weight, Apgar scores, and prematurity disappear.
Addiction to any substance, including crack, may be a risk factor for child abuse or neglect. Crack addiction, like other addictions, distracts parents from the child and leads to inattentive parenting. Mothers who continue to use drugs once their babies are born have trouble forming the normal parental bonds, more often interacting with their babies with a detached, unenthusiastic, flat demeanor. Conversely, low-stress environments and responsive caregiving may provide a protective effect on the child's brain, potentially compensating for negative effects of PCE.
Many drug users do not get prenatal care, for a variety of reasons including that they may not know they are pregnant. Many crack addicts get no medical care at all and have extremely poor diets, and children who live around crack smoking are at risk of inhaling secondary smoke. Cocaine using mothers also have a higher rate of sexually transmitted infections such as HIV and hepatitis.
In some cases, it is not clear whether direct results of PCE lead to behavioral problems, or whether environmental factors are at fault. For example, children who have caregiver instability may have more behavioral problems as a result, or it may be that behavioral problems manifested by PCE children lead to greater turnover in caregivers. Other factors that make studying PCE difficult include unwillingness of mothers to tell the truth about drug history, uncertainty of dosages of street drugs and high rates of attrition (loss of participants) from studies.
Studies have found after controlling for other factors that some effects are present in pregnancies involving cocaine: abruptio placenta, prematurity, low birth weight, and small size compared to babies of the same gestational time. PCE newborns have smaller heads and shorter bodies. PCE effects are more severe when the amounts of cocaine are greater. As many as 17–27% of cocaine-using pregnant women deliver prematurely. In association with prematurity, growth in the womb is reduced, and low birth weight is connected to PCE. There are also data showing that spontaneous abortion is associated with cocaine use. Cocaine reduces the appetite and has been linked with reduced maternal weight gain during pregnancy; in addition, constriction of the blood vessels may further limit supply of nutrients to the fetus. Using cocaine while pregnant also heightens the chances of maternal and fetal vitamin deficiencies,
respiratory distress syndrome for the baby, and infarction of the bowels. Early reports found that cocaine-exposed babies were at high risk for sudden infant death syndrome; however, by itself, cocaine exposure during fetal development has not subsequently been identified as a risk factor for the syndrome. Some, but not all, PCE children experience hypertonia (excessive muscle tone), and reduced reflexes and motor function have been found in babies four to six weeks old.
While newborns who were exposed prenatally to drugs such as barbiturates or heroin frequently have symptoms of drug withdrawal (neonatal abstinence syndrome), this does not happen with babies exposed to crack "in utero"; at least, such symptoms are difficult to separate in the context of other factors such as prematurity or prenatal exposure to other drugs.
The use of fertility medication that stimulates the ovary to release multiple eggs and of IVF with embryo transfer of multiple embryos has been implicated as an important factor in preterm birth. Maternal medical conditions increase the risk of preterm birth. Often labor has to be induced for medical reasons; such conditions include high blood pressure, pre-eclampsia, maternal diabetes, asthma, thyroid disease, and heart disease.
In a number of women anatomical issues prevent the baby from being carried to term. Some women have a weak or short cervix (the strongest predictor of premature birth) Women with vaginal bleeding during pregnancy are at higher risk for preterm birth. While bleeding in the third trimester may be a sign of placenta previa or placental abruption – conditions that occur frequently preterm – even earlier bleeding that is not caused by these conditions is linked to a higher preterm birth rate. Women with abnormal amounts of amniotic fluid, whether too much (polyhydramnios) or too little (oligohydramnios), are also at risk.
The mental status of the women is of significance. Anxiety and depression have been linked to preterm birth.
Finally, the use of tobacco, cocaine, and excessive alcohol during pregnancy increases the chance of preterm delivery. Tobacco is the most commonly abused drug during pregnancy and contributes significantly to low birth weight delivery. Babies with birth defects are at higher risk of being born preterm.
Passive smoking and/or smoking before the pregnancy influences the probability of a preterm birth. The World Health Organization published an international study in March 2014.
Presence of anti-thyroid antibodies is associated with an increased risk preterm birth with an odds ratio of 1.9 and 95% confidence interval of 1.1–3.5.
A 2004 systematic review of 30 studies on the association between intimate partner violence and birth outcomes concluded that preterm birth and other adverse outcomes, including death, are higher among abused pregnant women than among non-abused women.
The Nigerian cultural method of abdominal massage has been shown to result in 19% preterm birth among women in Nigeria, plus many other adverse outcomes for the mother and baby. This ought not be confused with massage conducted by a fully trained and licensed massage therapist or by significant others trained to provide massage during pregnancy, which has been shown to have numerous positive results during pregnancy, including the reduction of preterm birth, less depression, lower cortisol, and reduced anxiety.
In the western world, GBS (in the absence of effective prevention measures) is the main cause of bacterial infections in newborns, such as septicemia, pneumonia, and meningitis, which can lead to death or long-term after effects.
GBS infections in newborns are separated into two clinical types, early-onset disease (GBS-EOD) and late-onset disease (GBS-LOD). GBS-EOD manifests from 0 to 7 living days in the newborn, most of the cases of EOD being apparent within 24 h from birth. GBS-LOD starts between 7 and 90 days after birth.
The most common clinical syndromes of GBS-EOD are septicemia without apparent location, pneumonia, and less frequently meningitis. Bacteremia without a focus occurs in 80-85%, pneumonia in 10-15%, and meningitis in 5-10% of cases. The initial clinical findings are respiratory signs in more than 80% of cases. Neonates with meningitis often have an initial clinical presentation identical to presentation in those without meningeal affectation. An exam of the cerebrospinal fluid is often necessary to rule out meningitis.
Colonization with GBS during labour is the primary risk factor for the development of GBS-EOD. GBS-EOD is acquired vertically (vertical transmission), through exposure of the fetus or the baby to GBS from the vagina of a colonized woman, either "in utero" (because of ascending infection) or during birth, after rupture of membranes. Infants can also be infected during passage through the birth canal, nevertheless, newborns who acquire GBS through this route can only become colonized, and these colonized infants usually do not develop GBS-EOD.
Roughly 50% of newborns of GBS colonized mothers are also GBS colonized and (without prevention measures) 1-2% of these newborns will develop GBS-EOD.
In the past, the incidence of GBS-EOD ranged from 0.7 to 3.7 per thousand live births in the US, and from 0.2 to 3.25 per thousand in Europe.
In 2008, after widespread use of antenatal screening and intrapartum antibiotic prophylaxis, the Centers for Disease Control and Prevention of United States reported an incidence of 0.28 cases of GBS-EOD per thousand live births in the US.
Though maternal GBS colonization is the key determinant for GBS-EOD, other factors also increase the risk. These factors are:
- Onset of labour before 37 weeks of gestation (premature birth)
- Prolonged rupture of membranes (longer duration of membrane rupture) (≥18 h before delivery)
- Intrapartum (during childbirth) fever (>38 °C, >100.4 °F)
- Amniotic infections (chorioamnionitis)
- Young maternal age
Nevertheless, most babies who develop GBS-EOD are born to colonized mothers without any of these risk factors. Heavy GBS vaginal colonization is also associated with a higher risk for GBS-EOD. Women who had one of these risk factors but who are not GBS colonized at labour are at low risk for GBS-EOD compared to women who were colonized prenatally, but had none of the aforementioned risk factors.
Presence of low levels of anticapsular antibodies against GBS in the mother are also of great importance for the development of GBS-EOD.
Because of that, a previous sibling with GBS-EOD is also an important risk factor for the development of the infection in subsequent deliveries, probably reflecting the lack of protective antibodies in the mother.
Overall, the case fatality rates from GBS-EOD have declined, from 50% observed in studies from the 1970s to between 2 and 10% in recent years, mainly as a consequence of improvements in therapy and management. Fatal neonatal infections by GBS are more frequent among premature infants.
GBS-LOD affects infants from 7 days to 3 months of age and has a lower case fatality rate (1%-6%) than GBS-EOD. Clinical syndromes of GBS-EOD are bacteremia without a focus (65%), meningitis (25%), cellulitis, osteoarthritis, and pneumonia.
Prematurity has been reported to be the main risk factor. Each week of decreasing gestation increases the risk by a factor of 1.34 for developing GBS-LOD.
GBS-LOD is not acquired through vertical transmission during delivery; it can be acquired later from the mother from breast milk or from environmental and community sources.
GBS-LOD commonly shows nonspecific signs, and diagnosis should be made obtaining blood cultures in febrile newborns. Hearing loss and mental impairment can be a long-term consequence of GBS meningitis.
The determination of the safety of a medication can be evaluated by considering the following:
- The age and maturity of the infant. Full term infants are better able to metabolize medications than premature infants
- The weight of the infant.
- The amount and percentage of breastmilk consumed by the infant. An infant taking solid foods with breastfeeding will receive a lower dose of medication.
- The general health of the infant and the general health of the mother.
- The nature of the mother's illness, if present.
- The general information about the drug other literature documenting studies related to the drug and breastfeeding.
- The duration of the drug therapy.
- Is the drug short-acting? A short-acting form of the drug may be a better choice for a breastfeeding mother rather than a longer-acting form that stays in the mother's system for a longer period.
- How is the medication being given?
- Does the drug interfere with lactation?
The pregnancy category of a medication is an assessment of the risk of fetal injury due to the pharmaceutical, if it is used as directed by the mother during pregnancy. It does "not" include any risks conferred by pharmaceutical agents or their metabolites in breast milk.
Every drug has specific information listed in its product literature. The British National Formulary used to provide a table of drugs to be avoided or used with caution in pregnancy, and did so using a limited number of key phrases, but now Appendix 4 (which was the Pregnancy table) has been removed. Appendix 4 is now titled "Intravenous Additives". However, information that was previously available in the former Appendix 4 (pregnancy) and Appendix 5 (breast feeding) is now available in the individual drug monographs.
Currently, the only reliable way to prevent GBS-EOD is intrapartum antibiotic prophylaxis (IAP) - administration of antibiotics during delivery. Intravenous penicillin or ampicillin given at the onset of labour and then again every four hours until delivery to GBS colonized women have been proven to be very effective at preventing vertical transmission of GBS from mother to baby and GBS-EOD
(penicillin G, 5 million units IV initial dose, then 2.5–3.0 million units every 4 hours until delivery or ampicillin, 2 g IV initial dose, then 1 g IV every 4 hours until delivery).
Penicillin-allergic women without a history of anaphylaxis (angioedema, respiratory distress, or urticaria) following administration of a penicillin or a cephalosporin (low risk of anaphylaxis) could receive cefazolin (2 g IV initial dose, then 1 g IV every 8 hours until delivery) instead of penicillin or ampicillin. Clindamycin (900 mg IV every 8 hours until delivery), and vancomycin (1 g IV every 12 hours until delivery) are used to prevent GBS-EOD in infants born to penicillin-allergic mothers. Erythromycin is not recommended under any circumstances today.
Antibiotic susceptibility testing of GBS isolates is crucial for appropriate antibiotic selection for IAP in penicillin-allergic women, because resistance to clindamycin, the most common agent used (in penicillin-allergic women), is increasing among GBS isolates. Appropriate methodologies for testing are important, because resistance to clyndamicin (antimicrobial resistance) can occur in some GBS strains that appear susceptible (antibiotic sensitivity) in certain susceptibility tests.
If appropriate IAP in GBS colonized women starts at least 2 hours before the delivery, the risk of neonatal infection is also somehow reduced.
True penicillin allergy is rare with an estimated frequency of anaphylaxis of one to five episodes per 10,000 cases of penicillin therapy. Penicillin administered to a woman with no history of β-lactam allergy has a risk of anaphylaxis of 0.04 to 4 per 100,000. Maternal anaphylaxis associated with GBS IAP occurs, but any morbidity associated with anaphylaxis is offset greatly by reductions in the incidence of GBS-EOD.
Home births are becoming increasingly popular in the UK. Recommendations for preventing GBS infections in newborns are the same for home births as for hospital births. Around 25% of women having home births probably carry GBS in their vaginas at delivery without knowing, and it could be difficult to follow correctly the recommendations of IAP and to deal with the risk of a severe allergic reaction to the antibiotics outside of a hospital setting.
IAPs have been considered to be associated with the emergence of resistant bacterial strains and with an increase in the incidence of early-onset infections caused by other pathogens, mainly Gram-negative bacteria such as "Escherichia coli". Nevertheless, most studies have not found an increased rate of non-GBS early-onset sepsis related to the widespread use of IAP.
Other strategies to prevent GBS-EOD have been studied, and chlorhexidine intrapartum vaginal cleansing has been proposed to help preventing GBS-EOD, nevertheless no evidence has been shown for the effectiveness of this approach.
Hypercoagulability in pregnancy, particularly due to inheritable thrombophilia, can lead to placental vascular thrombosis. This can in turn lead to complications like early-onset hypertensive disorders of pregnancy, pre-eclampsia and small for gestational age infants (SGA). Among other causes of hypercoagulability, Antiphospholipid syndrome has been associated with adverse pregnancy outcomes including recurrent miscarriage. Deep vein thrombosis has an incidence of one in 1,000 to 2,000 pregnancies in the United States, and is the second most common cause of maternal death in developed countries after bleeding.
There is also an increased risk for cardiovascular complications, including hypertension and ischemic heart disease, and kidney disease. Other risks include stroke and venous thromboembolism. It seems pre-eclampsia does not increase the risk of cancer.
Lowered blood supply to the fetus in pre-eclampsia causes lowered nutrient supply, which could result in intrauterine growth restriction (IUGR) and low birth weight. The fetal origins hypothesis states that fetal undernutrition is linked with coronary heart disease later in adult life due to disproportionate growth.
Because preeclampsia leads to a mismatch between the maternal energy supply and fetal energy demands, pre-eclampsia can lead to IUGR in the developing fetus. Infants suffering from IUGR are prone to suffer from poor neuronal development and in increased risk for adult disease according to the Barker hypothesis. Associated adult diseases of the fetus due to IUGR include, but are not limited to, coronary artery disease (CAD), type 2 diabetes mellitus (T2DM), cancer, osteoporosis, and various psychiatric illnesses.
The risk of pre-eclampsia and development of placental dysfunction has also been shown to be recurrent cross-generationally on the maternal side and most likely on the paternal side. Fetuses born to mothers that were born small for gestational age (SGA) were 50% more likely to develop preeclampsia while fetuses born to both SGA parents were three-fold more likely to develop preeclampsia in future pregnancies.
In low-risk pregnancies, the association between cigarette smoking and a reduced risk of pre-eclampsia has been consistent and reproducible across epidemiologic studies. High-risk pregnancies (those with pregestational diabetes, chronic hypertension, history of pre-eclampsia in a previous pregnancy, or multifetal gestation) showed no significant protective effect. The reason for this discrepancy is not definitively known; research supports speculation that the underlying pathology increases the risk of preeclampsia to such a degree that any measurable reduction of risk due to smoking is masked. However, the damaging effects of smoking on overall health and pregnancy outcomes outweighs the benefits in decreasing the incidence of preeclampsia. It is recommended that smoking be stopped prior to, during and after pregnancy.
Studies suggest that marijuana use in the months prior to or during the early stages of pregnancy may interfere with normal placental development and consequently increase the risk of preeclampsia.
Morning sickness may be an evolved trait that protects the baby against toxins ingested by the mother. Evidence in support of this theory includes:
- Morning sickness is very common among pregnant women, which argues in favor of its being a functional adaptation and against the idea that it is a pathology.
- Fetal vulnerability to toxins peaks at around 3 months, which is also the time of peak susceptibility to morning sickness.
- There is a good correlation between toxin concentrations in foods, and the tastes and odors that cause revulsion.
Women who have "no" morning sickness are more likely to miscarry. This may be because such women are more likely to ingest substances that are harmful to the fetus.
In addition to protecting the fetus, morning sickness may also protect the mother. A pregnant woman's immune system is suppressed during pregnancy, presumably to reduce the chances of rejecting tissues of her own offspring. Because of this, animal products containing parasites and harmful bacteria can be especially dangerous to pregnant women. There is evidence that morning sickness is often triggered by animal products including meat and fish.
If morning sickness is a defense mechanism against the ingestion of toxins, the prescribing of anti-nausea medication to pregnant women may have the undesired side effect of causing birth defects or miscarriages by encouraging harmful dietary choices.
Cannabis consumption in pregnancy might be associated with restrictions in growth of the fetus, miscarriage, and cognitive deficits. The American Congress of Obstetricians and Gynecologists recommended that cannabis use be stopped before and during pregnancy, Cannabis is the most commonly used illicit substance
among pregnant women.
Although it is difficult to draw firm conclusions, there is some evidence that prenatal exposure to marijuana may be associated with deficits in language, attention, cognitive performance, and delinquent behaviors. THC exposure in rats during the prenatal developmental phase may cause epigenetic changes in gene expression, but there is limited knowledge about the risk for psychiatric disorders because of ethical barriers to studying the developing human brain. While animal studies cannot take into account factors that could influence the effects of cannabis on human maternal exposure, such as environmental and social factors, a 2011 review of rodent studies by Campolongo "et al." said there was "... increasing evidence from animal studies showing that cannabinoid drugs ... induce enduring neurobehavioral abnormalities in the exposed offspring ..." Campolongo "et al." added that "clinical studies report hyperactivity, cognitive impairments and altered emotionality in humans exposed in utero to cannabis". Martin "et al." investigated recent trends in substance abuse treatment admissions for cannabis use in pregnancy in the US, based on Treatment Episodes Data Set (TEDS) from 1992 to 2012, and discovered that, while the proportion of treatment admissions for pregnant women was stable (about 4%), the admissions for women who were pregnant and reported any marijuana use grew from 29% to 43%. A 2015 review found that cannabis use by pregnant mothers impaired brain maturation in their children, and that it also predisposed their children to neurodevelopmental disorders.
Breastfeeding and medications is the description of the medications that can be used by a breastfeeding mother with no or few consequences and those medications which are recommended to be avoided. Some medications are excreted in breastmilk. Almost all medicines pass into breastmilk in small amounts. Some have no effect on the baby and can be used while breastfeeding. The National Institutes of Medicine (US) maintains a database containing information on drugs and other chemicals to which breastfeeding mothers may be exposed. It includes information on the levels of such substances in breast milk and infant blood, and the possible adverse effects in the nursing infant. Suggested therapeutic alternatives to those drugs are provided, where appropriate. All data are derived from reliable sources. Some medications and herbal supplements can be of concern. This can be because the drug can accumulate in breastmilk or have effects on the infant and the mother. Those medications of concern are those medications used to treat substance and alcohol addiction. Other medications of concern are those that are used in smoking cessation. Pain medications and antidepressants need evaluation.
A Rhc negative mother can become sensitised by red blood cell (RBC) Rhc antigens by her first pregnancy with a Rhc positive fetus. The mother can make IgG anti-Rhc antibodies, which are able to pass through the placenta and enter the fetal circulation. If the fetus is Rhc positive alloimmune hemolysis can occur leading to HDN. This is similar as for Rh disease, which is usually caused when a RhD negative mother is sensitised by her first pregnancy with a RhD positive fetus.
Sensitization to Rhc antigens can also be caused by blood transfusion.
Genetics plays a role in having a baby born with LGA. Taller, heavier parents tend to have larger babies. Babies born to an obese mother have greatly increased chances of LGA.