Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Not much research has been done on the epidemiology of congenital trigger thumbs. There are a few reports on the incidence in their respective studies. The most recent data comes from a Japanese study by Kukichi and Ogino where they found an incidence 3.3 trigger thumbs per 1,000 live births in 1 year old children.
Stenosing tenosynovitis is most commonly caused by overuse from chronic repetitive activities using the hand or the involved finger. Examples include work activities (e.g., computer use, materials handling) or recreational activities (e.g., knitting, golf, racket sports). Carpenters who use hammers suffer from this as well as those who continuously grip wood or other materials when cutting them due to having to use your hands as a clamp to hold things in place.
Primary stenosing tenosynovitis can be idiopathic, occurring in middle age women more frequently than in men, but can present also in infancy.
Secondary stenosing tenosynovitis can be caused by disease or entities that cause connective tissue disorders including the following:
- Rheumatoid arthritis and psoriatic arthritis—therefore the clinician must assess the hands for rheumatologic deformities.
- Gout
- Diabetes mellitus
- Amyloidosis
- Systemic lupus erythematosus
Others causes may include the following:
- Direct trauma to the site
- During the postpartum period
- Congenital
The reported incidence of constriction ring syndrome varies from 1/1200 and 1/15000 live births. The prevalence is equally in male and female.
Fetomaternal factors like prematurity, maternal illnes, low birth weight and maternal drug exposure are predisposing factors for the constriction ring syndrome.
No positive relationship between CRS and genetic inheritance has been reported.
It is unclear whether the cause of the trigger thumb is congenital or acquired. The occurrence of bilateral incidence and trigger thumbs in both children of twins are an indication for a congenital cause. Trigger thumb in children is also associated with trisomy of chromosome 13. For these reasons it was assumed that trigger thumbs in children are to be of congenital cause. However, more and more evidence which point towards an acquired cause have been found in recent studies. Therefore the name pediatric trigger thumb is also widely used (and currently preferred by some) for the same disorder.
"Infant’s persistent thumb-clutched hand, flexion-adduction deformity of the thumb, pollex varus, thumb in the hand deformity."
Congenital clasped thumb describes an anomaly which is characterized by a fixed thumb into the palm at the metacarpophalangeal joint in one or both hands.
The incidence and genetic background are unknown. A study of Weckesser et al. showed that boys are twice as often affected with congenital clasped thumb compared to girls. The anomaly is in most cases bilateral (present in both hands).
A congenital clasped thumb can be an isolated anomaly, but can also be attributed to several syndromes.
Malformations of the upper extremities can occur In the third to seventh embryonic week. In some cases the TPT is hereditary. In these cases, there is a mutation on chromosome 7q36. If the TPT is hereditary, it is mostly inherited as an autosomal dominant trait, non-opposable and bilateral. The sporadic cases are mostly opposable and unilateral.
Triphalangeal thumb can occur in syndromes but it can also be isolated. The triphalangeal thumb can appear in combination with other malformations or syndromes.
Syndromes include:
- Holt-Oram syndrome
- Aase syndrome
- Blackfan-Diamond syndrome
- Townes-Brocks syndrome
Malformations include:
- Radial polydactyly
- Syndactyly
- Claw-like hand or foot
Several risk factors of CMC OA of the thumb are known. Each of these risk factors does not cause CMC OA by itself, but acts as a predisposing factor influencing the process of OA in some way. Risk factors include: female gender, suffering from obesity, repetitive heavy manual labor, familial predisposition and hormonal changes, such as menopause.
The natural history of disease for trigger finger remains uncertain.
There is some evidence that idiopathic trigger finger behaves differently in people with diabetes.
Recurrent triggering is unusual after successful injection and rare after successful surgery.
While difficulty extending the proximal interphalangeal joint may persist for months, it benefits from exercises to stretch the finger straighter.
CMC OA is the most common form of OA affecting the hand. Dahaghin et al. showed that about 15% of women and 7% of men between 50 and 60 years of age suffer from CMC OA of the thumb. However, in about 65% of people older than 55 years, radiologic evidence of OA was present without any symptoms. Armstrong et al. reported a prevalence of 33% in postmenopausal women, of which one third was symptomatic, compared to 11% in men older than 55 years. This shows CMC OA of the thumb is significantly more prevalent in women, especially in postmenopausal women, compared to men.
The cause of trigger finger is unclear but several causes have been proposed. It has also been called stenosing tenosynovitis (specifically "digital tenosynovitis stenosans"), but this may be a misnomer, as inflammation is not a predominant feature.
It has been speculated that repetitive forceful use of a digit leads to narrowing of the fibrous digital sheath in which it runs, but there is little scientific data to support this theory. The relationship of trigger finger to work activities is debatable and scientific evidence for and against hand use as a cause exist. While the mechanism is unclear, there is some evidence that triggering of the thumb is more likely to occur following surgery for carpal tunnel syndrome. It may also occur in rheumatoid arthritis.
Diagnosing the congenital clasped thumb is difficult in the first three to four months of life, as it is normal when the thumb is clutched into the palm in these first months.
Diagnoses that cause the same flexion or adduction abnormalities of the thumb are:
- Congenital clasped thumb
- Congenital Trigger thumb (flexion of the interphalangeal joint) - Trigger finger
- Spasticity: overstimulation of muscles
Syndrome associated flexion-adduction of the thumb:
- Freeman-Sheldon syndrome (a congenital, heritable affection of the face, the hands, the feet and some joints)
- Distal arthrogryposis
- MASA syndrome
- X-linked hydrocephalus
- Adducted thumb syndrome
- Waardenburg syndrome
- Whistling face syndrome (Freeman-Sheldon syndrome)
- Digitotalar dysmorphism
- Multiple pterygium syndrome
About 1.8 million people go to the emergency department each year due to hand injuries.
Anterior interosseous syndrome or Kiloh-Nevin syndrome I is a medical condition in which damage to the anterior interosseous nerve (AIN), a motor branch of the median nerve, causes pain in the forearm and a characteristic weakness of the pincer movement of the thumb and index finger.
Most cases of AIN syndrome are due to a transient neuritis, although compression of the AIN can happen. Trauma to the median nerve have also been reported as a cause of AIN syndrome.
Although there is still controversy among upper extremity surgeons, AIN syndrome is now regarded as a neuritis (inflammation of the nerve) in most cases; this is similar to Parsonage–Turner syndrome. Although the exact etiology is unknown, there is evidence that it is caused by an immune mediated response.
Studies are limited, and no randomized controlled trials have been performed regarding the treatment of AIN syndrome. While the natural history of AIN syndrome is not fully understood, studies following patients who have been treated without surgery show that symptoms can resolve starting as late as one year after onset. Other retrospective studies have shown that there is no difference in outcome in surgically versus nonsurgically treated patients. Surgical decompression is rarely indicated in AIN syndrome. Indications for considering surgery include a known space-occupying lesion that is compressing the nerve (a mass) and persistent symptoms beyond 1 year of conservative treatment.
Hand-foot-genital syndrome is inherited in an autosomal dominant manner. The proportion of cases caused by de novo mutations is unknown because of the small number of individuals described. If a parent of the proband is affected, the risk to the siblings is 50%. When the parents are clinically unaffected, the risk to the sibs of a proband appears to be low. Each child of an individual with HFGS has a 50% chance of inheriting the mutation. Prenatal testing may be available through laboratories offering custom prenatal testing for families in which the disease-causing mutation has been identified in an affected family member.
Injuries of the forearm with compression of the nerve is the most common cause: examples include
supracondylar fractures, often associated with haemorrhage into the deep musculature;
injury secondary to open reduction of a forearm fracture; or dislocation of the elbow.
Direct trauma from a penetrating injury such as a stab wound is a common cause for the syndrome.
Fibrous bands or arcuate (curved) ligaments may entrap the median as well as the anterior interosseous nerves, in which case a patient may experience numbness as well as pain.
Rheumatoid disease and gouty arthritis may be a predisposing factor in anterior interosseous nerve entrapment.
Very similar syndromes can be caused by more proximal lesions, such as brachial plexus neuritis.
Anterior interosseous nerve entrapment or compression injury remains a difficult clinical diagnosis because it is mainly a motor nerve and the syndrome is often mistaken for finger ligamentous injury.
Surgical correction is recommended when a constriction ring results in a limb contour deformity, with or without lymphedema.
Three main support groups of this syndrome are the ASGA in Australia, The Association for Children with Genetic Disorders in Poland, and the Association of People of Genetic Disorders in Greece.
The cause of de Quervain's disease is not established. Evidence regarding a possible relation with occupational risk factors is debated. A systematic review of potential risk factors discussed in the literature did not find any evidence of a causal relationship with occupational factors. However, researchers in France found personal and work-related factors were associated with de Quervain's disease in the working population; wrist bending and movements associated with the twisting or driving of screws were the most significant of the work-related factors. Proponents of the view that De Quervain syndrome is a repetitive strain injury consider postures where the thumb is held in abduction and extension to be predisposing factors. Workers who perform rapid repetitive activities involving pinching, grasping, pulling or pushing have been considered at increased risk. Specific activities that have been postulated as potential risk factors include intensive computer mouse use, trackball use, and typing, as well as some pastimes, including bowling, golf, fly-fishing, piano-playing, sewing, and knitting.
Women are affected more often than men. The syndrome commonly occurs during and after pregnancy. Contributory factors may include hormonal changes, fluid retention and—more debatably—lifting.
Workers in certain fields are at risk of repetitive strains. Most occupational injuries are musculoskeletal disorders, and many of these are caused by cumulative trauma rather than a single event. Miners and poultry workers, for example, must make repeated motions which can cause tendon, muscular, and skeletal injuries.
Diagnosis is based on physical examination including radiographs of the hands and feet and imaging studies of the kidneys, bladder, and female reproductive tract. HOXA13 is the only gene known to be associated with HFGS. Approximately 60% of mutations are polyalanine expansions. Molecular genetic testing is clinically available.
Most hand injuries are minor and can heal without difficulty. However, any time the hand or finger is cut, crushed or the pain is ongoing, it is best to see a physician. Hand injuries when not treated on time can result in long term morbidity.
Antibiotics in simple hand injuries do not typically require antibiotics as they do not change the chance of infection.
The cytogenetic location is 7q36 and genomic coordinates are GRCh37:147,900,000 - 159,138,663 (NCBI). Mapping of this syndrome was done by Dundar and coworkers in 2001. They showed that this phenotype was linked to a 6.4-cM region of 7q36 flanked by the EN2 gene and the marker D7S2423. Dundar and coworkers characterized and mapped acropectoral syndrome and also showed it was unrelated to acropectorovertebral syndrome. The mapping showed that the acropectoral locus was in a region where preaxial polydactyly and triphalangeal thumb-polysyndactyly had previously been mapped. This study was important because it expanded the range of phenotypes that are connected to this locus. Previously, preaxial polydactyly and sternal defects have been linked to expression of the gene Sonic hedgehog Shh in limbbud and lateral plate mesoderm during development in mice. Dundar and coworkers found that the LMBR1 gene links to pre axial polydactyly. This gene encodes for a new transmembrane receptor and it is proposed that this receptor is an upstream regulator of SHH.
Omphalocele has been described in two patients with Apert syndrome by Herman T.E. et al. (USA, 2010) and by Ercoli G. et al. (Argentina, 2014). An omphalocele is a birth defect in which an intestine or other abdominal organs are outside of the body of an infant because of a hole in the bellybutton area. However, the association between omphalocele and Apert syndrome is not confirmed yet, so additional studies are necessary.
Intersection syndrome is a painful condition that affects the lateral side of the forearm when inflammation occurs at the intersection of the muscle bellies of the abductor pollicis longus and extensor pollicis brevis cross over the extensor carpi radialis longus and the extensor carpi radialis brevis. These 1st and 2nd dorsal muscle compartments intersect at this location, hence the name. The mechanism of injury is usually repetitive resisted extension, as with rowing, weight lifting, or pulling.
Intersection syndrome is often confused with another condition called DeQuervain's syndrome, which is an irritation of the thumb-sided set of tendons at the wrist, called the first dorsal compartment.