Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Pharmaceutical injuries can occur when a person is injured by a dangerous, defective or contaminated medication. Many pharmaceutical toxic injury cases are mass tort cases, as most medications are consumed by thousands of people. The cases are often litigated against drug manufacturers and distributors, and potentially against prescribing physicians. When prosecuted against drug manufacturers and distributors, pharmaceutical toxic tort cases differ from medical malpractice suits in that pharmaceutical toxic tort cases are essentially product liability cases, the defective product being the drug.
The home has recently become the subject of toxic tort litigation, due to exposure to mold contamination, construction materials such as wood or carpeting treated with formaldehyde, and pesticides, and lead paint. Some imported consumer items, such as toys and ceramics, may be produced with dangerously high levels of lead.
In epidemiology, environmental diseases are diseases that can be directly attributed to environmental factors (as distinct from genetic factors or infection). Apart from the true monogenic genetic disorders, environmental diseases may determine the development of disease in those genetically predisposed to a particular condition. Stress, physical and mental abuse, diet, exposure to toxins, pathogens, radiation, and chemicals found in almost all personal care products and household cleaners are possible causes of a large segment of non-hereditary disease. If a disease process is concluded to be the result of a combination of genetic and "environmental factor" influences, its etiological origin can be referred to as having a multifactorial pattern.
There are many different types of environmental disease including:
- Lifestyle disease such as cardiovascular disease, diseases caused by substance abuse such as alcoholism, and smoking-related disease
- Disease caused by physical factors in the environment, such as skin cancer caused by excessive exposure to ultraviolet radiation in sunlight
- Disease caused by exposure to toxic or irritant chemicals in the environment such as toxic metals
==Environmental Diseases vs. Pollution-
Related Diseases==
Environmental diseases are a direct result from the environment. This includes diseases caused by substance abuse, exposure to toxic chemicals, and physical factors in the environment, like UV radiation from the sun, as well as genetic predisposition. Meanwhile, pollution-related diseases are attributed to exposure to toxins in the air, water, and soil. Therefore all pollution-related disease are environmental diseases, but not all environmental diseases are pollution-related diseases.
The term "toxic abortion" was first used to identify this phenomenon in humans in the earliest studies of the effects of pollutants on pregnancy in 1928, "An Experimental Investigation Concerning Toxic Abortion Produced by Chemical Agents" by Morris M. Datnow M.D.
Toxic abortion chemicals studied at that time were:
Petrochemicals,
Heavy metals,
Organic solvents,
Tetrachloroethylene,
Glycol ethers,
2-Bromopropane,
Ethylene oxide,
Anesthetic gases, and
Antineoplastic drugs.
In 1932, the "Journal of State Medicine" reported on a natural variation, with the occurrence of "a considerable number of cases of toxic abortion" being caused by untreated dental caries.
Study of pollution-caused abortion in humans ceased for a considerable time, interest renewing in the 2000s. A 2009 study found that fossil fuels play a role, as "pregnant African-American women who live within a half mile of freeways and busy roads were three times more likely to have miscarriages than women who don't regularly breathe exhaust fumes." A 2011 study found a correlation between exposure to workplace toxins and spontaneous abortion, and called for further study. "Newsweek" magazine reported in May 2014 that a spike in stillborn babies in the town of Vernal, in Utah, had correlated with an increase in pollution from new gas and oil drilling. "Newsweek" reported that "Vernal’s rate of neonatal mortality appears to have climbed from about average in 2010 (relative to national figures) to six times the normal rate three years later." "Newsweek" quoted one expert's observation that "We know that pregnant women who breathe more air pollution have much higher rates of virtually every adverse pregnancy outcome that exists." A study published in the "Journal of Environmental Health" in October 2014 found tetrachloroethylene or PCE, to be "linked to increased risk for stillbirths and other pregnancy complications."
The PCE study found that "pregnancies with high exposure to PCE were 2.4 times more likely to end with stillborn babies and 1.4 times more likely to experience placental abruption — when the placenta peels away from uterine wall before delivery, causing the mother to bleed and the baby to lose oxygen — compared with pregnancies never exposed to PCE." Higher exposure lead to a 35 percent higher risk of abruption. PCE has also been tied to an increased risk for cancer. Children exposed to PCE as fetuses and toddlers are more likely to use drugs later in life. The toxin has been linked to mental illness, an increased risk of breast cancer and some birth defects. It has been tied to anxiety, depression, and impairments in cognition, memory and attention. PCE contamination has been found in the Massachusetts water supply and "on military bases across the country," and "water systems in California and Pennsylvania and have also been found to be contaminated with PCE."
In 2015, "Newsweek" reported that chemicals found in fast food wrappers multiply miscarriage risk by sixteen times.
Some instances have been reported of women intentionally seeking to induce toxic abortion, where circumstances make medical abortion difficult to obtain, by exposing themselves to environmental toxins.
Metal fume fever is due to the inhalation of certain metals, either as fine dust or most commonly as fumes. Simple metal compounds such as oxides are equally capable of causing it. The effects of particularly toxic compounds, such as nickel carbonyl, are not considered merely metal fume fever.
Exposure usually arises through hot metalworking processes, such as smelting and casting of zinc alloys, welding of galvanized metals, brazing, or soldering. If the metal concerned is particularly high-risk, the residue from cold sanding processes may also cause fume fever, even if the dose is lower. It may also be caused by electroplated surfaces or metal-rich anti-corrosion paint, such as cadmium passivated steel or zinc chromate primer on aluminium aircraft parts. Exposure has also been reported in use of lead-free ammunition, by the harder steel core stripping excess metal from the jacket of the bullet and barrel of the rifle.
The most plausible metabolic source of the symptoms is a dose-dependent release of certain cytokines, an event which occurs by inhaling metal oxide fumes that injure the lung cells. This is not an allergic reaction, though allergic reactions to metal fumes can occur.
Increased concentrations of urinary beta-2 microglobulin can be an early indicator of renal dysfunction in persons chronically exposed to low but excessive levels of environmental cadmium. The urinary beta-2 microglobulin test is an indirect method of measuring cadmium exposure. Under some circumstances, the Occupational Health and Safety Administration requires screening for renal damage in workers with long-term exposure to high levels of cadmium. Blood or urine cadmium concentrations provide a better index of excessive exposure in industrial situations or following acute poisoning, whereas organ tissue (lung, liver, kidney) cadmium concentrations may be useful in fatalities resulting from either acute or chronic poisoning. Cadmium concentrations in healthy persons without excessive cadmium exposure are generally less than 1 μg/L in either blood or urine. The ACGIH biological exposure indices for blood and urine cadmium levels are 5 μg/L and 5 μg/g creatinine, respectively, in random specimens. Persons who have sustained renal damage due to chronic cadmium exposure often have blood or urine cadmium levels in a range of 25-50 μg/L or 25-75 μg/g creatinine, respectively. These ranges are usually 1000-3000 μg/L and 100-400 μg/g, respectively, in survivors of acute poisoning and may be substantially higher in fatal cases.
The cause was traced to the consumption of colza oil that had been intended for industrial rather than food use. To discourage human consumption, the oil was denatured by the addition of aniline to make it smell and taste bad. It was then imported as cheap industrial oil by the company RAPSA at San Sebastián, handled by RAELCA, and illegally refined by ITH in Seville to remove the aniline, resulting in a palatable product that could then be illegally sold. It was sold as "olive oil" by street vendors at weekly street markets, and was used on salads and for cooking. The commonly accepted hypothesis states that toxic compounds derived during the refinement process were responsible.
Once the origin of the syndrome was realised, public health officials organized an exchange programme, whereby those who had bought the oil could exchange it for pure olive oil, thereby quickly ending the outbreak.
Additionally, there are environmental diseases caused by the aromatic carbon compounds including : benzene, hexachlorocyclohexane, toluene diisocyanate, phenol, pentachlorophenol, quinone and hydroquinone.
Also included are the aromatic nitro-, amino-, and pyridilium-deratives: nitrobenzene, dinitrobenzene, trinitrotoluene, paramethylaminophenol sulfate (Metol), dinitro-ortho-cresol, aniline, trinitrophenylmethylnitramine (tetryl), hexanitrodiphenylamine (aurantia), phenylenediamines, and paraquat.
The aliphatic carbon compounds can also cause environmental disease. Included in these are methanol, nitroglycerine, nitrocellulose, dimethylnitrosamine, and the halogenated hydrocarbons: methyl chloride, methyl bromide, trichloroethylene, carbon tetrachloride, and the chlorinated naphthalenes. Also included are glycols: ethylene chlorhydrin and diethylene dioxide as well as carbon disulfide, acrylonitrile, acrylamide, and vinyl chloride.
Toxic oil syndrome or simply toxic syndrome (Spanish: "síndrome del aceite tóxico" or "síndrome tóxico") is a musculoskeletal disease most famous for a 1981 outbreak in Spain which killed over 600 people and was likely caused by contaminated colza oil. Its first appearance was as a lung disease, with unusual features; though the symptoms initially resembled a lung infection, antibiotics were ineffective. The disease appeared to be restricted to certain geographical localities, and several members of a family could be affected, even while their neighbours had no symptoms. Following the acute phase, a range of other chronic symptoms was apparent.
Toxic abortion is a medical phenomenon of spontaneous abortion, miscarriage, or stillbirth caused by toxins in the environment of the mother during pregnancy, especially as caused by toxic environmental pollutants, though sometimes reported as caused by naturally occurring plant toxins.
Ethylene glycol poisoning is a relatively common occurrence worldwide. Human poisoning often occurs in isolated cases, but may also occur in epidemics. Many cases of poisoning are the result of using ethylene glycol as a cheap substitute for alcohol or intentional ingestions in suicide attempts. Less commonly it has been used as a means of homicide. Children or animals may be exposed by accidental ingestion; children and animals often consume large amounts due to ethylene glycol having a sweet taste. In the United States there were 5816 cases reported to poison centers in 2002. Additionally, ethylene glycol was the most common chemical responsible for deaths reported by US poison centers in 2003. In Australia there were 17 cases reported to the Victorian poison center and 30 cases reported to the New South Wales poison center in 2007. However, these numbers may underestimate actual numbers because not all cases attributable to ethylene glycol are reported to poison control centers. Most deaths from ethylene glycol are intentional suicides; deaths in children due to unintentional ingestion are extremely rare.
In an effort to prevent poisoning, often a bittering agent called denatonium benzoate, known by the trade name Bitrex, is added to ethylene glycol preparations as an adversant to prevent accidental or intentional ingestion. The bittering agent is thought to stop ingestion as part of the human defense against ingestion of harmful substances is rejection of bitter tasting substances. In the United States, eight states (Oregon, California, New Mexico, Virginia, Arizona, Maine, Tennessee, Washington) have made the addition of bittering agents to antifreeze compulsory. Three follow up studies targeting limited populations or suicidal persons to assess the efficacy of bittering agents in preventing toxicity or death have, however, shown limited benefit of bittering ethylene glycol preparations in these two populations. Specifically, Mullins finds that bittering of antifreeze does not reduce reported cases of poisoning of preschoolers in the US state of Oregon. Similarly, White found that adding bittering agents did not decrease the frequency or severity of antifreeze poisonings in children under the age of 5. Additionally, another study by White found that suicidal persons are not deterred by the bittered taste of antifreeze in their attempts to kill themselves. These studies did not focus on poisoning of domestic pets or livestock, for example, or inadvertent exposure to bittered antifreeze among a large population (of non-preschool age children).
Poisoning of a raccoon was diagnosed in 2002 in Prince Edward Island, Canada. An online veterinary manual provides information on lethal doses of ethylene glycol for chicken, cattle, as well as cats and dogs, adding that younger animals may be more susceptible.
Metal fume fever, also known as brass founders' ague, brass shakes, zinc shakes, galvie flu, metal dust fever, Welding Shivers, or Monday morning fever, is an illness primarily caused by exposure to chemicals such as zinc oxide (ZnO), aluminum oxide (AlO), or magnesium oxide (MgO) which are produced as byproducts in the fumes that result when certain metals are heated. Other common sources are fuming silver, gold, platinum, chromium (from stainless steel), nickel, arsenic, manganese, beryllium, cadmium, cobalt, lead, selenium, and zinc.
Welders are commonly exposed to the substances that cause metal fume fever from the base metal, plating, or filler. Brazing and soldering can also cause metal poisoning due to exposure to lead, zinc, copper, or cadmium. In extreme cases, cadmium (present in some older silver solder alloys) can cause loss of consciousness.
Treatment for antifreeze poisoning needs to be started as soon after ingestion as possible to be effective; the earlier treatment is started, the greater the chance of survival. Cats must be treated within 3 hours of ingesting of antifreeze to be effective, while dogs must be treated within 8–12 hours of ingestion. Once kidney failure develops, the prognosis is poor.
Generally, if the patient is treated and survives then a full recovery is expected. Patients who present early to medical facilities and have prompt medical treatment typically will have a favorable outcome. Alternatively, patients presenting late with signs and symptoms of coma, hyperkalemia, seizures, or severe acidosis have a poor prognosis. Patients who develop severe central nervous system manifestations or stroke who survive may have long term neurologic dysfunction; in some cases they may recover, although convalescence may be prolonged. The most significant long-term complication is related to the kidneys. Cases of permanent kidney damage, often requiring chronic dialysis or kidney transplantation, have been reported after severe poisoning.
It is difficult to differentiate the effects of low level metal poisoning from the environment with other kinds of environmental harms, including nonmetal pollution. Generally, increased exposure to heavy metals in the environment increases risk of developing cancer.
Without a diagnosis of metal toxicity and outside of evidence-based medicine, but perhaps because of worry about metal toxicity, some people seek chelation therapy to treat autism, cardiovascular disease, Alzheimer's disease, or any sort of neurodegeneration. Chelation therapy does not improve outcomes for those diseases.
Infants may develop respiratory symptoms as a result of exposure to a specific type of fungal mold, called Penicillium. Signs that an infant may have mold-related respiratory problems include (but are not limited to) a persistent cough and/or wheeze. Increased exposure increases the probability of developing respiratory symptoms during their first year of life. Studies have shown that a correlation exists between the probability of developing asthma and increased exposure to "Penicillium". The levels are deemed ‘no mold’ to ‘low level’ , from ‘low’ to ‘intermediate’ , and from ‘intermediate’ to ‘high’.
Mold exposures have a variety of health effects depending on the person. Some people are more sensitive to mold than others. Exposure to mold can cause a number of health issues such as; throat irritation, nasal stuffiness, eye irritation, cough and wheezing, as well as skin irritation in some cases. Exposure to mold may also cause heightened sensitivity depending on the time and nature of exposure. People at higher risk for mold allergies are people with chronic lung illnesses, which will result in more severe reactions when exposed to mold.
There has been sufficient evidence that damp indoor environments are correlated with upper respiratory tract symptoms such as coughing, and wheezing in people with asthma.
Studies have shown that people who are atopic (sensitive), already suffer from allergies, asthma, or compromised immune systems and occupy damp or moldy buildings are at an increased risk of health problems such as inflammatory and toxic responses to mold spores, metabolites and other components. The most common health problem is an allergic reaction. Other problems are respiratory and/or immune system responses including respiratory symptoms, respiratory infections, exacerbation of asthma, and rarely hypersensitivity pneumonitis, allergic alveolitis, chronic rhinosinusitis and allergic fungal sinusitis. Severe reactions are rare but possible. A person's reaction to mold depends on their sensitivity and other health conditions, the amount of mold present, length of exposure and the type of mold or mold products.
Some molds also produce mycotoxins that can pose serious health risks to humans and animals. The term "toxic mold" refers to molds that produce mycotoxins, such as "Stachybotrys chartarum", not to all molds. Exposure to high levels of mycotoxins can lead to neurological problems and in some cases death. Prolonged exposure, e.g., daily workplace exposure, can be particularly harmful.
The five most common genera of indoor molds are "Cladosporium", "Penicillium", "Aspergillus", "Alternaria" and "Trichoderma".
Damp environments which allow mold to grow can also produce bacteria and help release volatile organic compounds.
Heavy metals "can bind to vital cellular components, such as structural proteins, enzymes, and nucleic acids, and interfere with their functioning". Symptoms and effects can vary according to the metal or metal compound, and the dose involved. Broadly, long-term exposure to toxic heavy metals can have carcinogenic, central and peripheral nervous system and circulatory effects. For humans, typical presentations associated with exposure to any of the "classical" toxic heavy metals, or chromium (another toxic heavy metal) or arsenic (a metalloid), are shown in the table.
Poisoning is a condition or a process in which an organism becomes chemically harmed (poisoned) by a toxic substance or venom of an animal.
Acute poisoning is exposure to a poison on one occasion or during a short period of time. Symptoms develop in close relation to the degree of exposure. Absorption of a poison is necessary for systemic poisoning (that is, in the blood throughout the body). In contrast, substances that destroy tissue but do not absorb, such as lye, are classified as corrosives rather than poisons. Furthermore, many common household medications are not labeled with skull and crossbones, although they can cause severe illness or even death. In the medical sense, toxicity and poisoning can be caused by less dangerous substances than those legally classified as a poison. Toxicology is the study and practice of the symptoms, mechanisms, diagnosis, and treatment of poisoning.
Chronic poisoning is long-term repeated or continuous exposure to a poison where symptoms do not occur immediately or after each exposure. The patient gradually becomes ill, or becomes ill after a long latent period. Chronic poisoning most commonly occurs following exposure to poisons that bioaccumulate, or are biomagnified, such as mercury, gadolinium, and lead.
Contact or absorption of poisons can cause rapid death or impairment. Agents that act on the nervous system can paralyze in seconds or less, and include both biologically derived neurotoxins and so-called nerve gases, which may be synthesized for warfare or industry.
Inhaled or ingested cyanide, used as a method of execution in gas chambers, almost instantly starves the body of energy by inhibiting the enzymes in mitochondria that make ATP. Intravenous injection of an unnaturally high concentration of potassium chloride, such as in the execution of prisoners in parts of the United States, quickly stops the heart by eliminating the cell potential necessary for muscle contraction.
Most biocides, including pesticides, are created to act as poisons to target organisms, although acute or less observable chronic poisoning can also occur in non-target organisms (secondary poisoning), including the humans who apply the biocides and other beneficial organisms. For example, the herbicide 2,4-D imitates the action of a plant hormone, which makes its lethal toxicity specific to plants. Indeed, 2,4-D is not a poison, but classified as "harmful" (EU).
Many substances regarded as poisons are toxic only indirectly, by toxication. An example is "wood alcohol" or methanol, which is not poisonous itself, but is chemically converted to toxic formaldehyde and formic acid in the liver. Many drug molecules are made toxic in the liver, and the genetic variability of certain liver enzymes makes the toxicity of many compounds differ between individuals.
Exposure to radioactive substances can produce radiation poisoning, an unrelated phenomenon.
Even though zinc is an essential requirement for a healthy body, excess zinc can be harmful, and cause zinc toxicity. Such toxicity levels have been seen to occur at ingestion of greater than 225 mg of Zinc. Excessive absorption of zinc can suppress copper and iron absorption. The free zinc ion in solution is highly toxic to bacteria, plants, invertebrates, and even vertebrate fish.
A toxic heavy metal is any relatively dense metal or metalloid that is noted for its potential toxicity, especially in environmental contexts. The term has particular application to cadmium, mercury, lead and arsenic, all of which appear in the World Health Organisation's list of 10 chemicals of major public concern. Other examples include manganese, chromium, cobalt, nickel, copper, zinc, selenium, silver, antimony and thallium.
Heavy metals are found naturally in the earth. They become concentrated as a result of human caused activities and can enter plant, animal, and human tissues via inhalation, diet, and manual handling. Then, they can bind to and interfere with the functioning of vital cellular components. The toxic effects of arsenic, mercury, and lead were known to the ancients, but methodical studies of the toxicity of some heavy metals appear to date from only 1868. In humans, heavy metal poisoning is generally treated by the administration of chelating agents. Some elements otherwise regarded as toxic heavy metals are essential, in small quantities, for human health.
The disruption of olfaction and potential effects to survival and reproductive success at environmentally-relevant concentrations metals, pesticides or surfactants have implications for fish and salmon recovery because these are commonly found in western United States streams. Conventional, acute and chronic toxicity testing do not explicitly address nervous system function and underestimate thresholds for toxicity in salmonids. Since these effects are not explicitly looked at during studies they oftentimes can go unnoticed. Olfactory toxicity occurring at environmentally relevant concentrations can induce reduction to food odor attraction and predator scent or alarm response pheromones can cause major problems with survivorship. Olfactory toxicity can also affect the ability of anadromous fish to find their natal stream causing them to stray to other streams.
The illness is generally self-limiting. Management on the whole is preventative, by limiting exposure to mouldy environments with ventilation, or by wearing respiratory protection such as facemasks.
Cadmium is a naturally occurring toxic heavy metal with common exposure in industrial workplaces, plant soils, and from smoking. Due to its low permissible exposure to humans, overexposure may occur even in situations where trace quantities of cadmium are found. Cadmium is used extensively in electroplating, although the nature of the operation does not generally lead to overexposure. Cadmium is also found in some industrial paints and may represent a hazard when sprayed. Operations involving removal of cadmium paints by scraping or blasting may pose a significant hazard. Cadmium is also present in the manufacturing of some types of batteries. Exposures to cadmium are addressed in specific standards for the general industry, shipyard employment, construction industry, and the agricultural industry.
Tin has no known natural biological role in living organisms. It is not easily absorbed by animals and humans. The low toxicity is relevant to the widespread use of tin in dinnerware and canned food. Nausea, vomiting and diarrhea have been reported after ingesting canned food containing 200 mg/kg of tin. This observation led, for example, the Food Standards Agency in the UK to propose upper limits of 200 mg/kg. A study showed that 99.5% of the controlled food cans contain tin in an amount below that level. However un-lacquered tin cans with food of a low pH for example fruits and pickled vegetables can contain elevated concentrations of tin.
The toxic effects of tin compounds is based on the interference with the iron and copper metabolism. For example, it affects heme and cytochrome P450, and decreases their effectiveness.
Organotin compounds can be very toxic. "Tri-"n"-alkyltins" are phytotoxic and, depending on the organic groups, can be powerful bactericides and fungicides. Other triorganotins are used as miticides and acaricides.
Tributyltin (TBT) was extensively used in marine antifouling paints, until discontinued for leisure craft due to concerns over longer term marine toxicity in high traffic areas such as marinas with large numbers of static boats.
Tin poisoning refers to the toxic effects of tin and its compounds. Cases of poisoning from tin metal, its oxides, and its salts are "almost unknown"; on the other hand certain organotin compounds are almost as toxic as cyanide.