Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Risk factors for retinal detachment include severe myopia, retinal tears, trauma, family history, as well as complications from cataract surgery.
Retinal detachment can be mitigated in some cases when the warning signs are caught early. The most effective means of prevention and risk reduction is through education of the initial signs, and encouragement for people to seek ophthalmic medical attention if they have symptoms suggestive of a posterior vitreous detachment. Early examination allows detection of retinal tears which can be treated with laser or cryotherapy. This reduces the risk of retinal detachment in those who have tears from around 1:3 to 1:20. For this reason, the governing bodies in some sports require regular eye examination.
Trauma-related cases of retinal detachment can occur in high-impact sports or in high speed sports. Although some recommend avoiding activities that increase pressure in the eye, including diving and skydiving, there is little evidence to support this recommendation, especially in the general population. Nevertheless, ophthalmologists generally advise people with high degrees of myopia to try to avoid exposure to activities that have the potential for trauma, increase pressure on or within the eye itself, or include rapid acceleration and deceleration, such as bungee jumping or roller coaster rides.
Intraocular pressure spikes occur during any activity accompanied by the Valsalva maneuver, including weightlifting. An epidemiological study suggests that heavy manual lifting at work may be associated with increased risk of rhegmatogenous retinal detachment, but this relationship is not strong. In this study, obesity also appeared to increase the risk of retinal detachment. A high Body Mass Index (BMI) and elevated blood pressure have been identified as a risk factor in non-myopic individuals.
Genetic factors promoting local inflammation and photoreceptor degeneration may also be involved in the development of the disease.
Other risk factors include the following:
- Glaucoma
- AIDS
- Cataract surgery
- Diabetic retinopathy
- Eclampsia
- Family history of retinal detachment
- Homocysteinuria
- Malignant hypertension
- Metastatic cancer, which spreads to the eye (eye cancer)
- Retinoblastoma
- Severe myopia
- Smoking and passive smoking
- Stickler syndrome
- Von Hippel-Lindau disease
The incidence of retinal detachment in otherwise normal eyes is around 5 new cases in 100,000 persons per year. Detachment is more frequent in middle-aged or elderly populations, with rates of around 20 in 100,000 per year. The lifetime risk in normal individuals is about 1 in 300. Asymptomatic retinal breaks are present in about 6% of eyes in both clinical and autopsy studies.
- Retinal detachment is more common in people with severe myopia (above 5–6 diopters), in whom the retina is more thinly stretched. In such patients, lifetime risk rises to 1 in 20. About two-thirds of cases of retinal detachment occur in myopics. Myopic retinal detachment patients tend to be younger than non-myopic ones.
- Retinal detachment is more frequent after surgery for cataracts. The estimated long-term prevalence of retinal detachment after cataract surgery is in the range of 5 to 16 per 1000 cataract operations, but is much higher in patients who are highly myopic, with a prevalence of up to 7% being reported in one study. One study found that the probability of experiencing retinal detachment within 10 years of cataract surgery may be about 5 times higher than in the absence of treatment.
- Tractional retinal detachments can also occur in patients with proliferative diabetic retinopathy or those with proliferative retinopathy of sickle cell disease. In proliferative retinopathy, abnormal blood vessels (neovascularization) grow within the retina and extend into the vitreous. In advanced disease, the vessels can pull the retina away from the back wall of the eye, leading to tractional retinal detachment.
Although retinal detachment usually occurs in just one eye, there is a 15% chance of it developing in the other eye, and this risk increases to 25–30% in patients who have had a retinal detachment and cataracts extracted from both eyes.
This ocular pathology was first described by Iwanoff in 1865, and it has been shown to occur in about 7% of the population. It can occur more frequently in the older population with postmortem studies showing it in 2% of those aged 50 years and 20% in those aged 75 years.
There is no good evidence for any preventive actions, since it appears this is a natural response to aging changes in the vitreous. Posterior vitreous detachment (PVD) has been estimated to occur in over 75 per cent of the population over age 65, that PVD is essentially a harmless condition (although with some disturbing symptoms), and that it does not normally threaten sight. However, since epiretinal membrane appears to be a protective response to PVD, where inflammation, exudative fluid, and scar tissue is formed, it is possible that NSAIDs may reduce the inflammation response. Usually there are flashing light experiences and the emergence of floaters in the eye that herald changes in the vitreous before the epiretinal membrane forms g
As one gets older, pockets of fluid can develop in the vitreous. When these pockets develop near the back of the eye, the vitreous can pull away from the retina and possibly tear it. Posterior vitreous detachment accounts for 3.7–11.7% of vitreous hemorrhage cases.
Optic pits occur equally between men and women. They are seen in roughly 1 in 10,000 eyes, and approximately 85% of optic pits are found to be unilateral (i.e. in only one eye of any affected individual). About 70% are found on the temporal side (or lateral one-half) of the optic disc. Another 20% are found centrally, while the remaining pits are located either superiorly (in the upper one-half), inferiorly (in the lower one-half), or nasally (in the medial one-half towards the nose).
No particular risk factors have been conclusively identified; however, there have been a few reports that demonstrate an autosomal dominant pattern of inheritance in some families. Therefore, a family history of optic pits may be a possible risk factor.
The vitreous (Latin for "glassy") humor is a gel which fills the eye behind the lens. Between it and the retina is the vitreous membrane. With age the vitreous humor changes, shrinking and developing pockets of liquefaction, similar to the way a gelatin dessert shrinks and detaches from the edge of a pan. At some stage the vitreous membrane may peel away from the retina. This is usually a sudden event, but it may also occur slowly over months.
Age and refractive error play a role in determining the onset of PVD in a healthy person. PVD is rare in emmetropic people under the age of 40 years, and increases with age to 86% in the 90s. Several studies have found a broad range of incidence of PVD, from 20% of autopsy cases to 57% in a more elderly population of patients (average age was 83.4 years).
People with myopia (nearsightedness) greater than 6 diopters are at higher risk of PVD at all ages.
Posterior vitreous detachment does not directly threaten vision. Even so, it is of increasing interest because the interaction between the vitreous body and the retina might play a decisive role in the development of major pathologic vitreoretinal conditions, such as epiretinal membrane.
PVD may also occur in cases of cataract surgery, within weeks or months of the surgery.
The vitreous membrane is more firmly attached to the retina anteriorly, at a structure called the vitreous base. The membrane does not normally detach from the vitreous base, although it can be detached with extreme trauma. However, the vitreous base may have an irregular posterior edge. When the edge is irregular, the forces of the vitreous membrane peeling off the retina can become concentrated at small posterior extensions of the vitreous base. Similarly, in some people with retinal lesions such as lattice retinal degeneration or chorio-retinal scars, the vitreous membrane may be abnormally adherent to the retina. If enough traction occurs the retina may tear at these points. If there are only small point tears, these can allow glial cells to enter the vitreous humor and proliferate to create a thin epiretinal membrane that distorts vision. In more severe cases, vitreous fluid may seep under the tear, separating the retina from the back of the eye, creating a retinal detachment. Trauma can be any form from a blunt force trauma to the face such as a boxer's punch or even in some cases has been known to be from extremely vigorous coughing or blowing of the nose.
Less common causes of vitreous hemorrhage make up 6.4–18% of cases, and include:
- Proliferative sickle cell retinopathy
- Macroaneurysm
- Age-related macular degeneration
- Terson syndrome
- Retinal neovascularization as a result of branch or central retinal vein occlusion
- Other – about 7 cases in 100,000 have no known cause attributed to them.
No complications are encountered in most patients with lattice degeneration, although in young myopes, retinal detachment can occur. There are documented cases with macula-off retinal detachment in patients with asymptomatic lattice degeneration. Partial or complete vision loss almost always occurs in such cases. Currently there is no prevention or cure for lattice degeneration.
CSR is a fluid detachment of macula layers from their supporting tissue. This allows choroidal fluid to leak beneath the retina. The buildup of fluid seems to occur because of small breaks in the retinal pigment epithelium.
CSR is sometimes called "idiopathic CSR" which means that its cause is unknown. Nevertheless, stress appears to play an important role. An oft-cited but potentially inaccurate conclusion is that persons in stressful occupations, such as airplane pilots, have a higher incidence of CSR.
CSR has also been associated with cortisol and corticosteroids. Persons with CSR have higher levels of cortisol. Cortisol is a hormone secreted by the adrenal cortex which allows the body to deal with stress, which may explain the CSR-stress association. There is extensive evidence to the effect that corticosteroids (e.g. cortisone), commonly used to treat inflammations, allergies, skin conditions and even certain eye conditions, can trigger CSR, aggravate it and cause relapses. In a study documented by Indian Journal of Pharmacology, a young male was using Prednisolone and began to display subretinal fluid indicative of CSR. With the discontinuation of the steroid drop the subretinal fluid resolved and did not show any sign of recurrence. Thus indicating the steroid was the probable cause of the CSR. A study of 60 persons with Cushing's syndrome found CSR in 3 (5%). Cushing's syndrome is characterized by very high cortisol levels. Certain sympathomimetic drugs have also been associated with causing the disease.
Evidence has also implicated helicobacter pylori (see gastritis) as playing a role. It would appear that the presence of the bacteria is well correlated with visual acuity and other retinal findings following an attack.
Evidence also shows that sufferers of MPGN type II kidney disease can develop retinal abnormalities including CSR caused by deposits of the same material that originally damaged the glomerular basement membrane in the kidneys.
A posterior vitreous detachment (PVD) is a condition of the eye in which the vitreous membrane separates from the retina.
It refers to the separation of the posterior hyaloid membrane from the retina anywhere posterior to the vitreous base (a 3–4 mm wide attachment to the ora serrata).
The condition is common for older adults; over 75% of those over the age of 65 develop it. Although less common among people in their 40s or 50s, the condition is not rare for those individuals. Some research has found that the condition is more common among women.
Studies have identified the following abnormalities as risk factors for the development of BRVO:
- hypertension
- cardiovascular disease
- obesity
- glaucoma
Diabetes mellitus was not a major independent risk factor.
Predisposing factors for Postoperative PVR are preoperative PVR, aphakia, high levels of vitreous proteins, duration of retinal detachment before corrective surgery, the size of the retinal hole or tear, intra-ocular inflammation, vitreous hemorrhage, and trauma to the eye. An equation to calculate the patient's risk for acquiring PVR is:
1 is added if the risk factor is present and 0 if the risk factor is absent. A patient is at a high risk for developing PVR is the PVR score is >6.33.
Vitreomacular adhesion (VMA) is a human medical condition where the vitreous gel (or simply vitreous) of the human eye adheres to the retina in an abnormally strong manner. As the eye ages, it is common for the vitreous to separate from the retina. But if this separation is not complete, i.e. there is still an adhesion, this can create pulling forces on the retina that may result in subsequent loss or distortion of vision. The adhesion in of itself is not dangerous, but the resulting pathological vitreomacular traction (VMT) can cause severe ocular damage.
The current standard of care for treating these adhesions is pars plana vitrectomy (PPV), which involves surgically removing the vitreous from the eye. A biological agent for non-invasive treatment of adhesions called ocriplasmin has been approved by the FDA on Oct 17 2012.
This may be present in conditions causing traction on the retina especially at the macula. This may occur in:
a) The vitreomacular traction syndrome; b) Proliferative diabetic retinopathy with vitreoretinal traction; c) Atypical cases of impending macular hole.
Traction caused by VMA is the underlying pathology of an eye disease called symptomatic VMA. There is evidence that symptomatic VMA can contribute to the development of several well-known eye disorders, such as macular hole and macular pucker, that can cause visual impairment, including blindness. It may also be associated with age-related macular degeneration (AMD), diabetic macular edema (DME), retinal vein occlusion, and diabetic retinopathy (DR).
Barrage laser is at times done prophylactically around a hole or tear associated with lattice degeneration in an eye at risk of developing a retinal detachment. It is not known if surgical interventions such as laser photocoagulation or cryotherapy is effective in preventing retinal detachment in patients with lattice degeneration or "asymptomatic" retinal detachment. Laser photocoagulation has been shown to reduce risks of retinal detachment in "symptomatic" lattice degeneration. There are documented cases wherein retina detached from areas which were otherwise healthy despite being treated previously with laser.
Retinal haemorrhages commonly occur in high attitude climbers, most likely due to the effects of systemic hypoxia on the eye. Risk is correlated with the maximum altitude reached, duration of exposure to high altitude conditions, and climb rate.
Berlin's edema (commotio retinae) is a common condition caused by blunt injury to the eye. It is characterized by decreased vision in the injured eye a few hours after the injury. Under examination the retina appears opaque and white in colour in the periphery but the blood vessels are normally seen along with "cherry red spot" in the foveal reigion.This whitening is indicative of cell damage, which occurs in the retinal pigment epithelium and outer segment layer of photoreceptors. Damage to the outer segment often results in photoreceptor death through uncertain mechanisms. Usually there is no leakage of fluid and therefore it is not considered a true edema. The choroidal fluorescence in fluorescent angiography is absent. Visual acuity ranges from 20/20 to 20/400.
The prognosis is excellent except in case of complications of choroidal rupture, hemorrhage or pigment epithelial damage, but damage to the macula will result in poorer recovery. The outcome can be worsened in the case of retinal detachment, atrophy or hyperplasia. Visual field defects can occur. In late cases cystoid macular edema sometimes develops which can further lead to macular destruction.
Commotio retinae is usually self limiting and there is no treatment as such. It usually resolves in 3–4 weeks without any complications and sequelae.
Although intermediate uveitis can develop at any age, it primarily afflicts children and young adults. There is a bimodal distribution with one peak in the second decade and another peak in the third or fourth decade.
In the United States the proportion of patients with intermediate uveitis is estimated to be 4-8% of uveitis cases in referral centers. The National Institutes of Health reports a higher percentage (15%), which may indicate improved awareness or the nature of the uveitis referral clinic. In the pediatric population, intermediate uveitis can account for up to 25% of uveitis cases.
It is estimated that this much less common form of retinoschisis affects one in 5,000 to 25,000 individuals, primarily young males. "Schisis" is derived from the Greek word meaning "splitting", describing the splitting of the retinal layers from each other. However, "schisis" is a word fragment, and the term "retinoschisis" should be used, as should the term "iridoschisis" when describing splitting of the iris. If the retinoschisis involves the macula, then the high-resolution central area of vision used to view detail is lost, and this one form of macular disease. Although it might be described by some as a "degeneration", the term "macular degeneration" should be reserved for the specific disease "age-related macular degeneration".
Retinoschisis can be caused by an X-linked genetic defect, affecting the vision of men who inherit the disease from their unaffected carrier mothers. The genetic form of this disease usually starts during childhood and is called X-linked Juvenile Retinoschisis (XLRS) or Congenital Retinoschisis. Affected males are usually identified in grade school, but occasionally are identified as young infants.
Very few affected individuals go completely blind from retinoschisis, but some sufferers have very limited reading vision and are "legally blind". Visual acuity can be reduced to less than 20/200 in both eyes. Individuals affected by XLRS are at an increased risk for retinal detachment and eye hemorrhage, among other potential complications.
Retinoschisis causes acuity loss in the center of the visual field through the formation of tiny cysts in the retina, often forming a "spoke-wheel" pattern that can be very subtle. The cysts are usually only detectable by a trained clinician. In some cases vision cannot be improved by glasses, as the nerve tissue itself is damaged by these cysts.
The National Eye Institute (NEI) of the National Institutes of Health (NIH) is currently conducting clinical and genetic studies of X-Linked Juvenile Retinoschisis. This study is currently recruiting patients. A better understanding of why and how XLRS develops might lead to improved treatments. Males diagnosed with X-linked juvenile retinoschisis and females who are suspected carriers may be eligible to participate. In addition to giving a medical history and submitting medical records, participants submit a blood sample and the NEI will perform a genetic analysis. There is no cost to participate in this study.
There are many causes of blurred vision:
- Use of atropine or other anticholinergics
- Presbyopia—Difficulty focusing on objects that are close. Common in the elderly. (Accommodation tends to decrease with age.)
- Cataracts—Cloudiness over the eye's lens, causing poor night-time vision, halos around lights, and sensitivity to glare. Daytime vision is eventually affected. Common in the elderly.
- Glaucoma—Increased pressure in the eye, causing poor night vision, blind spots, and loss of vision to either side. A major cause of blindness. Glaucoma can happen gradually or suddenly—if sudden, it is a medical emergency.
- Diabetes—Poorly controlled blood sugar can lead to temporary swelling of the lens of the eye, resulting in blurred vision. While it resolves if blood sugar control is reestablished, it is believed repeated occurrences promote the formation of cataracts (which are not temporary).
- Diabetic retinopathy—This complication of diabetes can lead to bleeding into the retina. Another common cause of blindness.
- Hypervitaminosis A—Excess consumption of vitamin A can cause blurred vision.
- Macular degeneration—Loss of central vision, blurred vision (especially while reading), distorted vision (like seeing wavy lines), and colors appearing faded. The most common cause of blindness in people over age 60.
- Eye infection, inflammation, or injury.
- Sjögren's syndrome, a chronic autoimmune inflammatory disease that destroys moisture producing glands, including lacrimal (tear)
- Floaters—Tiny particles drifting across the eye. Although often brief and harmless, they may be a sign of retinal detachment.
- Retinal detachment—Symptoms include floaters, flashes of light across your visual field, or a sensation of a shade or curtain hanging on one side of your visual field.
- Optic neuritis—Inflammation of the optic nerve from infection or multiple sclerosis. You may have pain when you move your eye or touch it through the eyelid.
- Stroke or transient ischemic attack
- Brain tumor
- Toxocara—A parasitic roundworm that can cause blurred vision
- Bleeding into the eye
- Temporal arteritis—Inflammation of an artery in the brain that supplies blood to the optic nerve.
- Migraine headaches—Spots of light, halos, or zigzag patterns are common symptoms prior to the start of the headache. A retinal migraine is when you have only visual symptoms without a headache.
- Myopia—Blurred vision may be a systemic sign of local anaesthetic toxicity
- Reduced blinking—Lid closure that occurs too infrequently often leads to irregularities of the tear film due to prolonged evaporation, thus resulting in disruptions in visual perception.
- Carbon monoxide poisoning—Reduced oxygen delivery can effect many areas of the body including vision. Other symptoms caused by CO include vertigo, hallucination and sensitivity to light.
Central serous retinopathy (CSR), also known as central serous chorioretinopathy (CSC or CSCR), is an eye disease which causes visual impairment, often temporary, usually in one eye. When the disorder is active it is characterized by leakage of fluid under the retina that has a propensity to accumulate under the central macula. This results in blurred or distorted vision (metamorphopsia). A blurred or gray spot in the central visual field is common when the retina is detached. Reduced visual acuity may persist after the fluid has disappeared.
The disease is considered of unknown cause. It mostly affects white males in the age group 20 to 50 and occasionally other groups. The condition is believed to be exacerbated by stress or corticosteroid use.
Distortion of vision refers to straight lines not appearing straight, but instead bent, crooked, or wavy. Usually this is caused by distortion of the retina itself. This distortion can herald a loss of vision in macular degeneration, so anyone with distorted vision should seek medical attention by an ophthalmologist promptly. Other conditions leading to swelling of the retina can cause this distortion, such as macular edema and central serous chorioretinopathy.
An Amsler grid can be supplied by an ophthalmologist so that the vision can be monitored for distortion in people who may be predisposed to this problem.
Tunnel vision implies that the peripheral vision, or side vision, is lost, while the central vision remains. Thus, the vision is like looking through a tunnel, or through a paper towel roll. Some disorders that can cause this include:
Glaucoma - severe glaucoma can result in loss of nearly all of the peripheral vision, with a small island of central vision remaining. Sometimes even this island of vision can be lost as well.
Retinitis pigmentosa - This is usually a hereditary disorder which can be part of numerous syndromes. It is more common in males. The peripheral retina develops pigmentary deposits, and the peripheral vision gradually becomes worse and worse. The central vision can be affected eventually as well. People with this problem may have trouble getting around in the dark. Cataract can be a complication as well. There is no known treatment for this disorder, and supplements of Vitamin A have not been proven to help.
Punctate Inner Choroidopathy - This condition is where vessels gro (( material is missing ))
Stroke - a stroke involving both sides of the visual part of the brain may wipe out nearly all of the peripheral vision. Fortunately, this is a very rare occurrence