Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Links between maternal smoking and TDS are tenuous, but there are stronger associations between maternal alcohol consumption and incidences of cryptorchidism in sons. Smoking does however affect the growth of a fetus, and low birth weight is shown to increase the likelihood of all the disorders encompassed by TDS. Maternal obesity, resulting in gestational diabetes, has also been shown to be a risk factor for impaired testes development and TDS symptoms in sons.
Exposure of a male fetus to substances that disrupt hormone systems, particularly chemicals that inhibit the action of androgens (male sex hormones) during the development of the reproductive system, has been shown to cause many of the characteristic TDS disorders. These include environmental estrogens and anti-androgens found in food and water sources that have been contaminated with synthetic hormones and pesticides used in agriculture. In historical cases, medicines given to pregnant women, like diethylstilbestrol (DES), have caused many of the features of TDS in fetuses exposed to this chemical during gestation. The impact of environmental chemicals is well documented in animal models. If a substance affects Sertoli and Leydig cell differentiation (a common feature of TDS disorders) at an early developmental stage, germ cell growth and testosterone production will be impaired. These processes are essential for testes descent and genitalia development, meaning that genital abnormalities like cryptorchidism or hypospadias may be present from birth, and fertility problems and TGCC become apparent during adult life. Severity or number of disorders may therefore be dependent on the timing of the environmental exposure. Environmental factors can act directly, or via epigenetic mechanisms, and it is likely that a genetic susceptibility augmented by environmental factors is the primary cause of TDS.
There is increasing evidence that the harmful products of tobacco smoking may damage the testicles and kill sperm, but their effect on male fertility is not clear. Some governments require manufacturers to put warnings on packets. Smoking tobacco increases intake of cadmium, because the tobacco plant absorbs the metal. Cadmium, being chemically similar to zinc, may replace zinc in the DNA polymerase, which plays a critical role in sperm production. Zinc replaced by cadmium in DNA polymerase can be particularly damaging to the testes.
Pre-testicular factors refer to conditions that impede adequate support of the testes and include situations of poor hormonal support and poor general health including:
- Hypogonadotropic hypogonadism due to various causes
- Obesity increases the risk of hypogonadotropic hypogonadism. Animal models indicate that obesity causes leptin insensitivity in the hypothalamus, leading to decreased Kiss1 expression, which, in turn, alters the release of gonadotropin-releasing hormone (GnRH).
- Undiagnosed and untreated coeliac disease (CD). Coeliac men may have reversible infertility. Nevertheless, CD can present with several non-gastrointestinal symptoms that can involve nearly any organ system, even in the absence of gastrointestinal symptoms. Thus, the diagnosis may be missed, leading to a risk of long-term complications. In men, CD can reduce semen quality and cause immature secondary sex characteristics, hypogonadism and hyperprolactinaemia, which causes impotence and loss of libido. The giving of gluten free diet and correction of deficient dietary elements can lead to a return of fertility. It is likely that an effective evaluation for infertility would best include assessment for underlying celiac disease, both in men and women.
- Drugs, alcohol
- Strenuous riding (bicycle riding, horseback riding)
- Medications, including those that affect spermatogenesis such as chemotherapy, anabolic steroids, cimetidine, spironolactone; those that decrease FSH levels such as phenytoin; those that decrease sperm motility such as sulfasalazine and nitrofurantoin
- Genetic abnormalities such as a Robertsonian translocation
In most full-term infant boys with cryptorchidism but no other genital abnormalities, a cause cannot be found, making this a common, sporadic, unexplained (idiopathic) birth defect. A combination of genetics, maternal health, and other environmental factors may disrupt the hormones and physical changes that influence the development of the testicles.
- Severely premature infants can be born before descent of testes. Low birth weight is also a known factor.
- A contributing role of environmental chemicals called endocrine disruptors that interfere with normal fetal hormone balance has been proposed. The Mayo Clinic lists "parents' exposure to some pesticides" as a known risk factor.
- Diabetes and obesity in the mother.
- Risk factors may include exposure to regular alcohol consumption during pregnancy (5 or more drinks per week, associated with a 3x increase in cryptorchidism, when compared to non-drinking mothers. Cigarette smoking is also a known risk factor.
- Family history of undescended testicle or other problems of genital development.
- Cryptorchidism occurs at a much higher rate in a large number of congenital malformation syndromes. Among the more common are Down syndrome Prader–Willi syndrome, and Noonan syndrome.
- In vitro fertilization, use of cosmetics by the mother, and preeclampsia have also been recognized as risk factors for development of cryptorchidism.
In 2008 a study was published that investigated the possible relationship between cryptorchidism and prenatal exposure to a chemical called phthalate (DEHP) which is used in the manufacture of plastics. The researchers found a significant association between higher levels of DEHP metabolites in the pregnant mothers and several sex-related changes, including incomplete descent of the testes in their sons. According to the lead author of the study, a national survey found that 25% of U.S. women had phthalate levels similar to the levels that were found to be associated with sexual abnormalities.
A 2010 study published in the European medical journal "Human Reproduction" examined the prevalence of congenital cryptorchidism among offspring whose mothers had taken mild analgesics, primarily over-the-counter pain medications including ibuprofen (e.g. Advil) and paracetamol (acetaminophen). Combining the results from a survey of pregnant women prior to their due date in correlation with the health of their children and an "ex vivo" rat model, the study found that pregnant women who had been exposed to mild analgesics had a higher prevalence of baby boys born with congenital cryptorchidism.
New insight into the testicular descent mechanism has been hypothesized by the concept of a male programming window (MPW) derived from animal studies. According to this concept, testicular descent status is "set" during the period from 8 to 14 weeks of gestation in humans. Undescended testis is a result of disruption in androgen levels only during this programming window.
The human breast cancer susceptibility gene 2 (BRCA2) is employed in homologous recombinational repair of DNA damages during meiosis. A common single-nucleotide polymorphism of BRCA2 is associated with severe oligospermia.
Men with mild oligospermia (semen concentration of 15 million to 20 million sperm/ml) were studied for an association of sperm DNA damage with life style factors. A significant association was found between sperm DNA damage and factors such as age, obesity and occupational stress.
In about 30% of infertile men no causative factor is found for their decrease in sperm concentration or quality by common clinical, instrumental, or laboratory means, and the condition is termed "idiopathic" (unexplained). A number of factors may be involved in the genesis of this condition, including age, infectious agents ( such as "Chlamydia trachomatis"), Y chromosome microdeletions, mitochondrial changes, environmental pollutants, and "subtle" hormonal changes.
A review in 2013 came to the result that oligospermia and azoospermia are significantly associated with being overweight (odds ratio 1.1), obese (odds ratio 1.3) and morbidly obese (odds ratio 2.0), but the cause of this is unknown. It found no significant relation between oligospermia and being underweight.
During embryogenesis, without any external influences for or against, the human reproductive system is intrinsically conditioned to give rise to a female reproductive organisation.
As a result, if a gonad cannot express its sexual identity via its hormones—as in gonadal dysgenesis—then the affected person, no matter whether their chromosomes are XY or XX, will develop external female genitalia. Internal female genitalia, primarily the uterus, may or may not be present depending on the cause of the disorder.
In both sexes, the commencement and progression of puberty require functional gonads that will work in harmony with the hypothalamic and pituitary glands to produce adequate hormones.
For this reason, in gonadal dysgenesis the accompanying hormonal failure also prevents the development of secondary sex characteristics in either sex, resulting in a sexually infantile female appearance and infertility.
Idiopathic azoospermia is where there is no known cause of the condition. It may be a result of multiple risk factors, such as age and weight. For example, a review in 2013 came to the result that oligospermia and azoospermia are significantly associated with being overweight (odds ratio 1.1), obese (odds ratio 1.3) and morbidly obese (odds ratio 2.0), but the cause of this is unknown. The review found no significant relation between oligospermia and being underweight.
This condition will occur if there is an absence of both Müllerian inhibiting factor and testosterone. The absence of testosterone will result in regression of the Wolffian ducts; normal male internal reproductive tracts will not develop. The absence of Müllerian inhibiting factor will allow the Müllerian ducts to differentiate into the oviducts and uterus. In sum, this individual will possess female-like internal and external reproductive characteristics, lacking secondary sex characteristics. The genotype may be either 45,XO, 46,XX or 46,XY.
Approximately 1 in 20,000 individuals with a male appearance have 46,XX testicular disorder.
At puberty, most affected individuals require treatment with the male sex hormone testosterone to induce development of male secondary sex characteristics such as facial hair and deepening of the voice (masculinization). Hormone treatment can also help prevent breast enlargement (gynecomastia). Adults with this disorder are usually shorter than average for males and are unable to have children (infertile).
One of the strongest arguments for early orchiopexy is reducing the risk of testicular cancer. About 1 in 500 men born with one or both testes undescended develops testicular cancer, roughly a 4 to 40 fold increased risk. The peak incidence occurs in the 3rd and 4th decades of life. The risk is higher for intra-abdominal testes and somewhat lower for inguinal testes, but even the "normally descended" testis of a man whose other testis was undescended has about a 20% higher cancer risk than those of other men.
The most common type of testicular cancer occurring in undescended testes is seminoma. It is usually treatable if caught early, so urologists often recommend that boys who had orchiopexy as infants be taught testicular self-examination, to recognize testicular masses and seek early medical care for them. Cancer developing in an intra-abdominal testis would be unlikely to be recognized before considerable growth and spread, and one of the advantages of orchiopexy is that a mass developing in a scrotal testis is far easier to recognize than an intra-abdominal mass.
It was originally felt that orchidopexy resulted in easier detection of testis cancer but did not lower the risk of actually developing cancer. However, recent data has resulted in a paradigm shift. The New England Journal of Medicine published in 2007 that orchidopexy performed before puberty resulted in a significantly reduced risk of testicular cancer than if done after puberty.
The risk of malignancy in the undescended testis is 4 to 10 times higher than that in the general population and is approximately 1 in 80 with a unilateral undescended testis and 1 in 40 to 1 in 50 for bilateral undescended testes. The peak age for this tumor is 15–45 yr. The most common tumor developing in an undescended testis is a seminoma (65%); in contrast, after orchiopexy, seminomas represent only 30% of testis tumors.
Treatment includes androgen (testosterone) supplementation to artificially initiate puberty, testicular prosthetic implantation, and psychological support. Gender Dysphoria may result in anorchic individuals who are assigned male at birth and raised as male despite lacking the necessary masculinizing hormones during prenatal, childhood, and adolescent development. Anorchic individuals who have a female identity may be administered estrogen alone in place of testosterone as no androgen blockers are necessary due to the lack of gonads.
In an embryo, the conversion of the gonads into testicles in males-to-be and into ovaries in females-to-be is the function of Leydig cells. In testicular agenesis, this process fails. Penile agenesis can be caused by testicular agenesis. Testes are the sole producer of 5-alpha dihydrotestosterone (5aDHT) in the male body. Where the gonads fail to metamorphose into testes, there is no 5aDHT. Therefore, the masculising process that builds the genital tubercle, the precursor to the penis, is stillborn. When this happens, the child is born with both penile and testicular agenesis and is known by the slang term "nullo". This combination of both conditions is estimated to occur in between 20-30 million male births.
Penile agenesis can exist independently after full testicular development; in this case its cause is unknown.
A problem for people with penile agenesis is the absence of a urinary outlet. Before genital metamorphosis, the urethra runs down the anal wall, to be pulled away by the genital tubercle during male development. Without male development this does not occur. The urethra can be surgically redirected to the rim of the anus immediately after birth to enable urination and avoid consequent internal irritation from urea concentrate. In such cases, the perineum may be left devoid of any genitalia, male or female.
A working penis transplant on to an agenetic patient has never been successful. Only one major penis graft was successfully completed. This occurred in China and the patient shortly rejected it on psychological grounds. However a full female or agenetic to male transplant is not yet facilitated to fulfil full reproductive functions.
On March 18, 2013, it was announced that Andrew Wardle, a British man born without a penis, was going to receive a pioneering surgery to create a penis for him. The surgeons hope to "fold a large flap of skin from his arm — complete with its blood vessels and nerves — into a tube to graft onto his pubic area." If the surgery goes well, the odds of starting a family are very good.
In posttesticular azoospermia sperm are produced but not ejaculated, a condition that affects 7–51% of azoospermic men. The main cause is a physical obstruction (obstructive azoospermia) of the posttesticular genital tracts. The most common reason is a vasectomy done to induce contraceptive sterility. Other obstructions can be congenital (example agenesis of the vas deferens as seen in certain cases of cystic fibrosis) or acquired, such as ejaculatory duct obstruction for instance by infection.
Ejaculatory disorders include retrograde ejaculation and anejaculation; in these conditions sperm are produced but not expelled.
Gonadectomy at time of diagnosis is the current recommendation for PAIS if presenting with cryptorchidism, due to the high (50%) risk of germ cell malignancy. The risk of malignancy when testes are located intrascrotally is unknown; the current recommendation is to biopsy the testes at puberty, allowing investigation of at least 30 seminiferous tubules, with diagnosis preferably based on OCT3/4 immunohistochemistry, followed by regular examinations. Hormone replacement therapy is required after gonadectomy, and should be modulated over time to replicate the hormone levels naturally present in the body during the various stages of puberty. Artificially induced puberty results in the same, normal development of secondary sexual characteristics, growth spurt, and bone mineral accumulation. Women with PAIS may have a tendency towards bone mineralization deficiency, although this increase is thought to be less than is typically seen in CAIS, and is similarly managed.
Encountered karyotypes include 47XXY, 46XX/46XY, or 46XX/47XXY or XX & XY with SRY Mutations, Mixed Chromosomal abnormalities or hormone deficiency/excess disorders, and various degrees of mosaicism of these and a variety of others. The 3 Primary Karyotypes for True Hermaphroditism are XX with genetic defects (55-70% of cases), XX/XY (20-30% of cases) & XY (5-15% of cases) with the remainder being a variety of other Chromosomal abnormalities and Mosaicisms.
PMDS type I results from mutations of the gene ("AMH") for AMH on chromosome 19p3.3.
PMDS type II results from mutations of the gene ("AMH-RII") for the AMH receptor on 12q13.
Both types of disorders are inherited as autosomal recessive conditions with expression usually limited to XY offspring.
Persistent Müllerian duct syndrome (PMDS) is the presence of Müllerian duct derivatives (fallopian tubes, uterus, and/or the upper part of the vagina) in what would be considered a genetically and otherwise physically normal male animal by typical human based standards. In humans, PMDS typically is due to an autosomal recessive congenital disorder and is considered by some to be a form of pseudohermaphroditism due to the presence of Müllerian derivatives.
Typical features include undescended testes (cryptorchidism) and the presence of a small, underdeveloped uterus in an XY infant or adult. This condition is usually caused by deficiency of fetal anti-Müllerian hormone (AMH) effect due to mutations of the gene for AMH or the anti-Müllerian hormone receptor, but may also be as a result of insensitivity to AMH of the target organ.
Upon diagnosis, estrogen and progesterone therapy is typically commenced, promoting the development of female characteristics.
The consequences of streak gonads to a person with Swyer syndrome:
1. Gonads cannot make estrogen, so the breasts will not develop and the uterus will not grow and menstruate until estrogen is administered. This is often given transdermally.
2. Gonads cannot make progesterone, so menstrual periods will not be predictable until progestin is administered, usually as a pill.
3. Gonads cannot produce eggs so conceiving children naturally is not possible. A woman with a uterus and ovaries but without female gamete is able to become pregnant by implantation of another woman's fertilized egg (embryo transfer).
4. Streak gonads with Y chromosome-containing cells have a high likelihood of developing cancer, especially gonadoblastoma. Streak gonads are usually removed within a year or so of diagnosis since the cancer can begin during infancy.
Anorchia (or anorchism) is an XY disorder of sex development in which individuals have both testes absent at birth. Within a few weeks of fertilization, the embryo develops rudimentary gonads (testes), which produce hormones responsible for the development of the reproductive system. If the testes fail to develop within eight weeks, the baby will develop female genitalia (see Swyer syndrome). If the testes begin to develop but are lost or cease to function between eight and 10 weeks, the baby will have ambiguous genitalia when it is born. However, if the testes are lost after 14 weeks, the baby will have partial male genitalia with the notable absence of gonads.
Tests include observable lack of testes, low testosterone levels (typical female levels), elevated follicle stimulating hormone and luteinizing hormone levels, XY karyotype, ultrasound or magnetic resonance imaging showing absent gonadal tissue, low bone density, low anti-Müllerian hormone levels, and surgical exploration for evidence of male gonadal tissue.
Reversal of symptoms have been reported in between 15% to 22% of cases. The causes of this reversal are still under investigation but have been reported in both males and females.
Reversal appears to be associated with 14 of the known gene defects linked to KS/CHH. The study suggests no obvious gene defect showing a tendency to allow reversal. There is a suggestion that the TAC3 and TACR3 mutations might allow for a slightly higher chance of reversal, but the numbers involved are too low to confirm this. The ANOS1 mutations appear to be least likely to allow reversal with to date only one recorded instance in medical literature. Even male patients who previous had micro-phallus or cryptorchidism have been shown to undergo reversal of symptoms.
The reversal might not be permanent and remission can occur at any stage; the paper suggests that this could be linked to stress levels. The paper highlighted a reversal case that went into remission but subsequently achieved reversal again, strongly suggesting an environmental link.
Reversal cases have been seen in cases of both KS and normosmic CHH but appear to be less common in cases of KS (where the sense of smell is also affected). A paper published in 2016 agreed with the theory that there is a strong environmental or epigenetic link to the reversal cases. The precise mechanism of reversal is unclear and is an area of active research.
Reversal would be apparent if testicular development was seen in men while on testosterone therapy alone or in women who menstruate or achieved pregnancy while on no treatment. To date there have been no recorded cases of the reversal of anosmia found in Kallmann syndrome cases.
There are several forms of gonadal dysgenesis. The term “pure gonadal dysgenesis” (PGD) has been used to describe conditions with normal sets of sex chromosomes (e.g., 46,XX or 46,XY), as opposed to those whose gonadal dysgenesis results from missing all or part of the second sex chromosome. The latter group includes those with Turner syndrome (i.e., 45,X) and its variants, as well as those with mixed gonadal dysgenesis and a mixture of cell lines, some containing a Y chromosome (e.g., 46,XY/45,X).
Thus Swyer syndrome is referred to as PGD, 46,XY, and XX gonadal dysgenesis as PGD, 46,XX. Patients with PGD have a normal karyotype but may have defects of a specific gene on a chromosome.