Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Acquired telangiectasia, not related to other venous abnormalities, for example on the face and trunk, can be caused by factors such as
- Acne rosacea
- Blepharitis
- Environmental damage such as that caused by sun or cold exposure
- Age
- Trauma to skin such as contusions or surgical incisions.
- Radiation exposure such as that experienced during radiotherapy for the treatment of cancer
- Chemotherapy
- Carcinoid syndrome
- Limited systemic sclerosis/scleroderma (a Scleroderma sub-type)
- Chronic treatment with topical corticosteroids may lead to telangiectasia.
- Spider angiomas are a radial array of tiny arterioles that commonly occur in pregnant women and in patients with hepatic cirrhosis and are associated with palmar erythema. In men, they are related to high estrogen levels secondary to liver disease.
- Tempi syndrome
- Smoking
In the past, people used to think that leg varicose veins or telangectasia were caused by high venous pressure or "venous hypertension". However it is now understood that venous reflux disease is usually the cause of these problems (see above for reference for "venous reflux".
Telangiectasia in the legs is often related to the presence of venous reflux within underlying varicose veins. Flow abnormalities within the medium-sized veins of the leg (reticular veins) can also lead to the development of telangiectasia.
Factors that predispose to the development of varicose and telangiectatic leg veins include
- Age: The development of spider veins may occur at any age but usually occurs between 18 and 35 years, and peaks between 50 and 60 years.
- Gender: It used to be thought that females were affected far more than males. However research has shown 79% of adult males and 88% of adult females have leg telangectasia (spider veins).
- Pregnancy: Pregnancy is a key factor contributing to the formation of varicose and spider veins. The most important factor is circulating hormones that weaken vein walls. There's also a significant increase in the blood volume during pregnancy, which tends to distend veins, causing valve dysfunction which leads to blood pooling in the veins. Moreover, later in pregnancy, the enlarged uterus can compress veins, causing higher vein pressure leading to dilated veins. Varicose veins that form during pregnancy may spontaneously improve or even disappear a few months after delivery.
- Lifestyle/occupation: Those who are involved with "prolonged sitting or standing" in their daily activities have an increased risk of developing varicose veins. The weight of the blood continuously pressing against the closed valves causes them to fail, leading to vein distention.
Spider angiomas form due to failure of the sphincteric muscle surrounding a cutaneous arteriole. The central red dot is the dilated arteriole and the red "spider legs" are small veins carrying away the freely flowing blood. If momentary pressure is applied, it is possible to see the emptied veins refilling from the centre. No other angiomas show this phenomenon.
The dilation, in turn, is caused by increased estrogen levels in the blood. Many pregnant women, or women using hormonal contraception, have spider angiomas, due to high estrogen levels in their blood. Individuals with significant hepatic disease also show many spider angiomas, as their liver cannot metabolize circulating estrogens, specifically estrone, which derives from the androgen androstenedione. About 33% of patients with cirrhosis have spider angiomas. As such, microhemorrhages may be observed as spider angiomas.
Spider angiomas are asymptomatic and usually resolve spontaneously. This is common in the case of children, although they may take several years to disappear. If the spider angiomas are associated with pregnancy, they may resolve after childbirth. In women taking oral contraceptives, they may resolve after stopping these contraceptives. The spider angiomas associated with liver disease may resolve when liver function increases or when a liver transplant is performed.
For spider angiomas on the face, techniques such as electrodesiccation and laser treatment can be used to remove the lesion. There is a small risk of a scar, although the results are generally good. Spider angiomas can recur after treatment.
Population studies from numerous areas in the world have shown that HHT occurs at roughly the same rate in almost all populations: somewhere around 1 in 5000. In some areas, it is much more common; for instance, in the French region of Haut Jura the rate is 1:2351 - twice as common as in other populations. This has been attributed to a founder effect, in which a population descending from a small number of ancestors has a high rate of a particular genetic trait because one of these ancestors harbored this trait. In Haut Jura, this has been shown to be the result of a particular "ACVRL1" mutation (named c.1112dupG or c.1112_1113insG). The highest rate of HHT is 1:1331, reported in Bonaire and Curaçao, two islands in the Caribbean belonging to the Netherlands Antilles.
Most people with HHT have a normal lifespan. The skin lesions and nosebleeds tend to develop during childhood. AVMs are probably present from birth, but don't necessarily cause any symptoms. Frequent nosebleeds are the most common symptom and can significantly affect quality of life.
Several anti-angiogenesis drugs approved for other conditions, such as cancer, have been investigated in small clinical trials. The anti-VEGF antibody bevacizumab, for instance, has been used off-label in several studies. In the largest study conducted so far, bevacizumab infusion was associated with a decrease in cardiac output and reduced duration and number of episodes of epistaxis in treated HHT patients. Thalidomide, another anti-angiogenesis drug, was also reported to have beneficial effects in HHT patients. Thalidomide treatment was found to induce vessel maturation in an experimental mouse model of HHT and to reduce the severity and frequency of nosebleeds in the majority of a small group of HHT patients. The blood hemoglobin levels of these treated patients rose as a result of reduced hemorrhage and enhanced blood vessel stabilization.
Angiokeratomas characteristically have large dilated blood vessels in the superficial dermis and hyperkeratosis (overlying the dilated vessels).
In some instances nodular angiokeratomas can produce necrotic tissue and valleys that can harbor fungal, bacterial and viral infections. Infections can include staphylococcus. If the lesion becomes painful, begins draining fluids or pus, or begins to smell, consult a physician. In these instance a doctor may recommend excision and grafting.
Universal angiomatosis (also known as "Generalized telangiectasia") is a bleeding disease that affects the blood vessels of the skin and mucous membranes as well as other parts of the body.
PVA usually has an underlying cause, attributed to existing skin diseases and disorders associated with a cutaneous lymphoma or inflammation. Mycosis fungoides is the common lymphoma believed to cause PVA, although it may be considered a precursor when the lymphoma is (hidden) and undiagnosed. Large plaque parapsoriasis is another common causes of PVA. Less common causes include autoimmune-related connective tissue diseases such as lupus, dermatomyositis and scleroderma. Dermatoses and those that are genetically inspired, called genodermatoses, may also be an underlying cause of PVA. Among them, xeroderma pigmentosum and Rothmund-Thomson syndrome (poikiloderma congenita) are thought to be the most prominent. Ingestion of substances containing arsenic, such as arsphenamine, has also been suggested as a least common cause. PVA can also be idiopathic (of unknown cause), as seen in a small number of cases.
Telangiectasia macularis eruptiva perstans is persistent, pigmented, asymptomatic eruption of macules usually less than 0.5 cm in diameter with a slightly reddish-brown tinge.
Kaposiform hemangioendothelioma (KHE) is a rare vascular neoplasm that is locally aggressive but without metastatic potential. It occurs particularly in the skin, deep soft tissue, retroperitoneum, mediastinum, and rarely in bone. Although lesions occur solitary, they often involve large areas of the body, such as the head/neck region (40%), trunk (30%), or extremity (30%).
Usually, it is present at birth as a flat, reddish-purple, tense and edematous lesion.
Although half of lesions are congenital, 58% of KHE develop during infancy, 32% between age 1 and 10 years (32%) and 10% after 11 years of age. Moreover, adult onset has been described too with mainly males being affected. Both sexes are affected equally in children.
Lesions are often greater than 5 cm in diameter and can cause visible deformity and pain. During early childhood, KHE may enlarge and after 2 years of age, it may partially regress. Though, it usually persists longterm. In addition, 50% of patients suffer from coagulopathy due to thrombocytopenia (<25,000/mm3), presenting with petechiae and bleeding. This is called the Kasabach-Merritt Phenomenon, which is caused by trapping of platelets and other clotting factors within the tumor. Kasabach-Merritt Phenomenon is less likely in patients with lesions less than 8 cm. As two-thirds of adult-onset KHE tumors are less than 2 cm, KHE in adults is rarely associated with Kasabach-Merritt Phenomenon.
Patients with KHE and Kasabach-Merritt Phenomenon present with petechiae and ecchymosis.
Most KHE tumors are diffuse involving multiple tissue planes and important structures. Resection of KHE is thus often difficult. Treatment of kaposiform hemangioendothelioma is therefore medical. The primary drug is interferon alfa, which is successful in 50% of children. Another option is vincristine, which has lots of side-effects, but has a response rate of 90%. Drug therapy is often used in shrinking the tumor and treating the coagulopathy. However, many of these kaposiform hemangioendotheliomas do not completely regress and remain as a much smaller asymptomatic tumor. However, KHE still has a high mortality rate of 30%. Although complete surgical removal with a large margin has the best reported outcome, it is usually not done because of the risk of bleeding, extensiveness, and the anatomic site of the lesion.
Operative management may be possible for small or localized lesions. Removal of larger areas also may be indicated for symptomatic patients or for patients who have failed farmacotherapy. Resection is not required for lesions that are not causing functional problems, because KHE is benign and because resection could cause deformity.
Congenital hemangioma can be distinguished from infantile hemangioma because it is fully developed at birth. It forms during prenatal life and has reached its maximal size at birth. Congenital hemangioma can even be diagnosed in utero by prenatal ultrasound. Unlike IH, CH is more common in the extremities, has an equal sex distribution, and is solitary, with an average diameter of 5 cm. It commonly presents in the head and neck and in the lower extremities.
Congenital hemangioma are divided into 2 subgroups: the rapidly involuting congenital hemangiomas (RICHs) and the non-involuting congenital hemangiomas(NICHs).
The rapidly involuting congenital hemangioma, RICH, presents at birth as a solitary raised tumor with a central depression, scar, or ulceration surrounded by a rim of pallor. It is noted for its involution, which typically begins several weeks after birth and is completed no later than 14 months of age. After regression RICH may cause a residual deformity, such as atrophic skin and subcutaneous tissue. It mainly affects the limbs (52%), but also the head and neck region (42%) and the trunk (6%).
The non-involuting congenital hemangioma, NICH, presents as a solitary, well-circumscribed reddish-pink to purple plaque with central telangiectasia and hypopigmented rim. In contrast to RICH, NICH does not involute and rarely ulcerates. It persists into late childhood and can even mimic a vascular malformation by growing commensurately with the child. Although NICH can resemble RICH in its external appearance, it can be differentiated from RICH by a greater elevation and coarse telangiectases. It mainly affects the head and neck region (43%), but also the limbs (38%) and the trunk (19%).
Surgical resection for congenital hemangiomas is rarely needed, because RICH undergoes postnatal regression and NICH is benign and often asymptomatic. Resection may be indicated to improve the appearance of the affected area, as long as the surgical scar is less noticeable than the lesion. Other indications are problematic ulcers with persistent bleeding or chronic infection.
Although most NICH lesions are non-problematic and do not cause significant deformity, the threshold for resection of NICH is lower, because it neither involutes, nor responds to pharmacotherapy. RICH tumors are observed until involution is completed. Involuted RICH may leave behind atrophic tissue, which can be reconstructed with autologous grafts. It is often best to postpone excision until regression is complete.
There are effective pharmacologic treatments, which include intralesional corticosteroid injection, systemic corticosteroid injection, interferon α-2a or α-2b and angiogenic inhibitors. The use of corticosteroids leads to accelerated regression in 30%, stabilization of growth in 40%, lightening of color and softening of the tumor. However, 30% shows minimal or no response. Another drug treatment is interferon α-2a or α-2b. It is often used for patients who did not respond to corticosteroids. Although the response rate is much slower, it has been successful for 80% of children treated. The most serious side effect of interferon is a spastic diplegia. Other therapeutic options are embolization and pulsed-dye laser, which improves residual telangiectasias in RICH and in NICH.
Nonthrombocytopenic purpura is a type of purpura (red or purple skin discoloration) not associated with thrombocytopenia.
Examples/causes include:
- Henoch–Schönlein purpura.
- Hereditary hemorrhagic telangiectasia
- Congenital cytomegalovirus
- Meningococcemia
The causes for PWS are either genetic or unknown. Some cases are a direct result of the RASA1 gene mutations. And individuals with RASA1 can be identified because this genetic mutation always causes multiple capillary malformations. PWS displays an autosomal dominant pattern of inheritance. This means that one copy of the damaged or altered gene is sufficient to elicit PWS disorder. In most cases, PWS can occur in people that have no family history of the condition. In such cases the mutation is sporadic. And for patients with PWS with the absence of multiple capillary mutations, the causes are unknown.
According to Boston’s Children Hospital, no known food, medications or drugs can cause PWS during pregnancy. PWS is not transmitted from person to person. But it can run in families and can be inherited. PWS effects both males and females equally and as of now no racial predominance is found
At the moment, there are no known measures that can be taken in order to prevent the onset of the disorder. But Genetic Testing Registry can be great resource for patients with PWS as it provides information of possible genetic tests that could be done to see if the patient has the necessary mutations. If PWS is sporadic or does not have RASA1 mutation then genetic testing will not work and there is not a way to prevent the onset of PWS.
CREST syndrome can be noted in up to 10% of patients with primary biliary cirrhosis.
Poikiloderma vasculare atrophicans (PVA), sometimes referred to as parapsoriasis variegata or parapsoriasis lichenoides is a cutaneous condition (skin disease) characterized by hypo- or hyperpigmentation (diminished or heightened skin pigmentation, respectively), telangiectasia and skin . Other names for the condition include prereticulotic poikiloderma and atrophic parapsoriasis. The condition was first described by pioneer American pediatrician Abraham Jacobi in 1906. PVA causes areas of affected skin to appear speckled red and inflamed, yellowish and/or brown, gray or grayish-black, with scaling and a thinness that may be described as "cigarette paper". On the surface of the skin, these areas may range in size from small patches, to plaques (larger, raised areas), to neoplasms (spreading, tumor-like growths on the skin).
Mycosis fungoides, a type of skin lymphoma, may be a cause of PVA. The condition may also be caused by, associated with or accompany any of the following conditions or disorders: other skin lymphomas, dermatomyositis, lupus erythematosus, Rothmund-Thompson syndrome, Kindler syndrome, dyskeratosis congenita, and chronic radiodermatitis. Rare causes include arsenic ingestion, and the condition can also be idiopathic.
PVA may be considered a rare variant of cutaneous T-cell lymphoma, a non-Hodgkin's form of lymphoma affecting the skin. It may also be included among a number of similar conditions that are considered as precursors to mycosis fungoides. PVA is believed to be a syndrome closely associated with large-plaque parapsoriasis and its cohort retiform parapsoriasis; including PVA, all three conditions fit within an updated view of the once ambiguous classification scheme known as parapsoriasis.
Hypotrichosis–lymphedema–telangiectasia syndrome is a congenital syndrome characterized by lymphedema (swelling of tissue due to malformation or malfunction of lymphatics), the presence of telegiectasias (small dilated vessels near the surface of the skin), and hypotrichosis or alopecia (hair loss). Lymphedema usually develops in the lower extremities during puberty. Hair is normal at birth, but usually lost during infancy. Telangiectasias may present on the palms and soles more commonly than on the scalp, legs, and genitalia. The syndrome has been reported in association with both autosomal dominant and autosomal recessive inheritance patterns.
It is associated with a rare mutation of the transcription factor gene "SOX18".
Café au lait spots can arise from diverse and unrelated causes:
- Having six or more café au lait spots greater than 5 mm in diameter before puberty, or greater than 15 mm in diameter after puberty, is a diagnostic feature of neurofibromatosis type I, but other features are required to diagnose NF-1.
- Familial multiple café au lait spots have been observed without NF-1 diagnosis.
- They can be caused by vitiligo in the rare McCune–Albright syndrome.
- Legius syndrome
- Tuberous sclerosis
- Fanconi anemia
- Idiopathic
- Ataxia-telangiectasia
- Basal cell nevus syndrome
- Benign congenital skin lesion
- Bloom syndrome
- Chédiak–Higashi syndrome
- Congenital naevus
- Gaucher disease
- Hunter syndrome
- Jaffe–Campanacci syndrome
- Maffucci syndrome
- Multiple mucosal neuroma syndrome
- Noonan syndrome
- Pulmonary Stenosis
- Silver–Russell syndrome
- Watson syndrome
- Wiskott–Aldrich syndrome
Crest syndrome involves the production of autoimmune anti-nuclear and anti-centromere antibodies, though their cause is not currently understood. There is no known infectious cause.
The prevalence of vWD is about one in 100 individuals. However, the majority of these people do not have symptoms. The prevalence of clinically significant cases is one per 10,000. Because most forms are rather mild, they are detected more often in women, whose bleeding tendency shows during menstruation. It may be more severe or apparent in people with blood type O.
Café au lait spots are usually present at birth, permanent, and may grow in size or increase in number over time.
Cafe au lait spots are themselves benign and do not cause any illness or problems. However, they may be associated with syndromes such as Neurofibromatosis Type 1 and McCune-Albright syndrome.
The size and shape of the spots do not have any meaning or implications with regards to diagnosis of associated syndromes.
Many conditions affect the human integumentary system—the organ system covering the entire surface of the body and composed of skin, hair, nails, and related muscle and glands. The major function of this system is as a barrier against the external environment. The skin weighs an average of four kilograms, covers an area of two square meters, and is made of three distinct layers: the epidermis, dermis, and subcutaneous tissue. The two main types of human skin are: glabrous skin, the hairless skin on the palms and soles (also referred to as the "palmoplantar" surfaces), and hair-bearing skin. Within the latter type, the hairs occur in structures called pilosebaceous units, each with hair follicle, sebaceous gland, and associated arrector pili muscle. In the embryo, the epidermis, hair, and glands form from the ectoderm, which is chemically influenced by the underlying mesoderm that forms the dermis and subcutaneous tissues.
The epidermis is the most superficial layer of skin, a squamous epithelium with several strata: the stratum corneum, stratum lucidum, stratum granulosum, stratum spinosum, and stratum basale. Nourishment is provided to these layers by diffusion from the dermis, since the epidermis is without direct blood supply. The epidermis contains four cell types: keratinocytes, melanocytes, Langerhans cells, and Merkel cells. Of these, keratinocytes are the major component, constituting roughly 95 percent of the epidermis. This stratified squamous epithelium is maintained by cell division within the stratum basale, in which differentiating cells slowly displace outwards through the stratum spinosum to the stratum corneum, where cells are continually shed from the surface. In normal skin, the rate of production equals the rate of loss; about two weeks are needed for a cell to migrate from the basal cell layer to the top of the granular cell layer, and an additional two weeks to cross the stratum corneum.
The dermis is the layer of skin between the epidermis and subcutaneous tissue, and comprises two sections, the papillary dermis and the reticular dermis. The superficial papillary dermis with the overlying rete ridges of the epidermis, between which the two layers interact through the basement membrane zone. Structural components of the dermis are collagen, elastic fibers, and ground substance. Within these components are the pilosebaceous units, arrector pili muscles, and the eccrine and apocrine glands. The dermis contains two vascular networks that run parallel to the skin surface—one superficial and one deep plexus—which are connected by vertical communicating vessels. The function of blood vessels within the dermis is fourfold: to supply nutrition, to regulate temperature, to modulate inflammation, and to participate in wound healing.
The subcutaneous tissue is a layer of fat between the dermis and underlying fascia. This tissue may be further divided into two components, the actual fatty layer, or panniculus adiposus, and a deeper vestigial layer of muscle, the panniculus carnosus. The main cellular component of this tissue is the adipocyte, or fat cell. The structure of this tissue is composed of septal (i.e. linear strands) and lobular compartments, which differ in microscopic appearance. Functionally, the subcutaneous fat insulates the body, absorbs trauma, and serves as a reserve energy source.
Conditions of the human integumentary system constitute a broad spectrum of diseases, also known as dermatoses, as well as many nonpathologic states (like, in certain circumstances, melanonychia and racquet nails). While only a small number of skin diseases account for most visits to the physician, thousands of skin conditions have been described. Classification of these conditions often presents many nosological challenges, since underlying etiologies and pathogenetics are often not known. Therefore, most current textbooks present a classification based on location (for example, conditions of the mucous membrane), morphology (chronic blistering conditions), etiology (skin conditions resulting from physical factors), and so on. Clinically, the diagnosis of any particular skin condition is made by gathering pertinent information regarding the presenting skin lesion(s), including the location (such as arms, head, legs), symptoms (pruritus, pain), duration (acute or chronic), arrangement (solitary, generalized, annular, linear), morphology (macules, papules, vesicles), and color (red, blue, brown, black, white, yellow). Diagnosis of many conditions often also requires a skin biopsy which yields histologic information that can be correlated with the clinical presentation and any laboratory data.
Familial transmission is now recognized in a small proportion of people with MacTel type 2; however, the nature of any related genetic defect or defects remains elusive. The MacTel genetic study team hopes that exome analysis in the affected population and relatives may be more successful in identifying related variants.
Autosomal Dominant Retinal Vasculopathy with Cerebral Leukodystrophy (AD-RVCL) (previously known also as Cerebroretinal Vasculopathy, CRV, or Hereditary Vascular Retinopathy, HVR or Hereditary Endotheliopathy, Retinopathy, Nephropathy, and Stroke, HERNS) is an inherited condition resulting from a frameshift mutation to the TREX1 gene. This genetically inherited condition affects the retina and the white matter of the central nervous system, resulting in vision loss, lacunar strokes and ultimately dementia. Symptoms commonly begin in the early to mid-forties, and treatments currently aim to manage or alleviate the symptoms rather than treating the underlying cause. The overall prognosis is poor, and death can sometimes occur within 10 years of the first symptoms appearing.
AD-RVCL (CRV) Acronym
Autosomal Dominance (genetics) means only one copy of the gene is necessary for the symptoms to manifest themselves.
Retinal Vasculopathy means a disorder that is associated with a disease of the blood vessels in the retina.
Cerebral means having to do with the brain.
Leukodystrophy means a degeneration of the white matter of the brain.
Pathogenesis
The main pathologic process centers on small blood vessels that prematurely “drop out” and disappear. The retina of the eye and white matter of the brain are the most sensitive to this pathologic process. Over a five to ten-year period, this vasculopathy (blood vessel pathology) results in vision loss and destructive brain lesions with neurologic deficits and death.
Most recently, AD-RVCL (CRV) has been renamed. The new name is CHARIOT which stands for Cerebral Hereditary Angiopathy with vascular Retinopathy and Impaired Organ function caused by TREX1 mutations.
Treatment
Currently, there is no therapy to prevent the blood vessel deterioration.
About TREX1
The official name of the TREX1 gene is “three prime repair exonuclease 1.” The normal function of the TREX1 gene is to provide instructions for making the 3-prime repair exonuclease 1 enzyme. This enzyme is a DNA exonuclease, which means it trims molecules of DNA by removing DNA building blocks (nucleotides) from the ends of the molecules. In this way, it breaks down unneeded DNA molecules or fragments that may be generated during genetic material in preparation for cell division, DNA repair, cell death, and other processes.
Changes (mutations) to the TREX1 gene can result in a range of conditions one of which is AD-RVCL. The mutations to the TREX1 gene are believed to prevent the production of the 3-prime repair exonuclease 1 enzyme. Researchers suggest that the absence of this enzyme may result in an accumulation of unneeded DNA and RNA in cells. These DNA and RNA molecules may be mistaken by cells for those of viral invaders, triggering immune system reactions that result in the symptoms of AD-RVCL.
Mutations in the TREX1 gene have also been identified in people with other disorders involving the immune system. These disorders include a chronic inflammatory disease called systemic lupus erythematosus (SLE), including a rare form of SLE called chilblain lupus that mainly affects the skin.
The TREX1 gene is located on chromosome 3: base pairs 48,465,519 to 48,467,644
The immune system.
- The immune system is composed of white blood cells or leukocytes.
- There are 5 different types of leukocytes.
- Combined, the 5 different leukocytes represent the 2 types of immune systems (The general or innate immune system and the adaptive or acquired immune system).
- The adaptive immune system is composed of two types of cells (B-cells which release antibodies and T-cells which destroy abnormal and cancerous cells).
How the immune system becomes part of the condition.
During mitosis, tiny fragments of “scrap” single strand DNA naturally occur inside the cell. Enzymes find and destroy the “scrap” DNA. The TREX1 gene provides the information necessary to create the enzyme that destroys this single strand “scrap” DNA. A mutation in the TREX1 gene causes the enzyme that would destroy the single strand DNA to be less than completely effective. The less than completely effective nature of the enzyme allows “scrap” single strand DNA to build up in the cell. The buildup of “scrap” single strand DNA alerts the immune system that the cell is abnormal.
The abnormality of the cells with the high concentration of “scrap” DNA triggers a T-cell response and the abnormal cells are destroyed. Because the TREX1 gene is identical in all of the cells in the body the ineffective enzyme allows the accumulation of “scrap” single strand DNA in all of the cells in the body. Eventually, the immune system has destroyed enough of the cells in the walls of the blood vessels that the capillaries burst open. The capillary bursting happens throughout the body but is most recognizable when it happens in the eyes and brain because these are the two places where capillary bursting has the most pronounced effect.
Characteristics of AD-RVCL
- No recognizable symptoms until after age 40.
- No environmental toxins have been found to be attributable to the condition.
- The condition is primarily localized to the brain and eyes.
- Optically correctable, but continuous, deterioration of visual acuity due to extensive multifocal microvascular abnormalities and retinal neovascularization leading, ultimately, to a loss of vision.
- Elevated levels of alkaline phosphatase.
- Subtle vascular changes in the retina resembling telangiectasia (spider veins) in the parafovea circulation.
- Bilateral capillary occlusions involving the perifovea vessels as well as other isolated foci of occlusion in the posterior pole of the retina.
- Headaches due to papilledema.
- Mental confusion, loss of cognitive function, loss of memory, slowing of speech and hemiparesis due to “firm masses” and white, granular, firm lesions in the brain.
- Jacksonian seizures and grand mal seizure disorder.
- Progressive neurologic deterioration unresponsive to systemic corticosteroid therapy.
- Discrete, often confluent, foci of coagulation necrosis in the cerebral white matter with intermittent findings of fine calcium deposition within the necrotic foci.
- Vasculopathic changes involving both arteries and veins of medium and small caliber present in the cerebral white matter.
- Fibroid necrosis of vessel walls with extravasation of fibrinoid material into adjacent parenchyma present in both necrotic and non-necrotic tissue.
- Obliterative fibrosis in all the layers of many vessel walls.
- Parivascular, adventitial fibrosis with limited intimal thickening.
Conditions with similar symptoms that AD-RVCL can be misdiagnosed as:
- Brain tumors
- Diabetes
- Macular degeneration
- Telangiectasia (Spider veins)
- Hemiparesis (Stroke)
- Glaucoma
- Hypertension (high blood pressure)
- Systemic Lupus Erythematosus (SLE (same original pathogenic gene, but definitely a different disease because of a different mutation in TREX1))
- Polyarteritis nodosa
- Granulomatosis with polyangiitis
- Behçet's disease
- Lymphomatoid granulomatosis
- Vasculitis
Clinical Associations
- Raynaud's phenomenon
- Anemia
- Hypertension
- Normocytic anemia
- Normochromic anemia
- Gastrointestinal bleeding or telangiectasias
- Elevated alkaline phosphatase
Definitions
- Coagulation necrosis
- Endothelium
- Fibrinoid
- Fibrinoid necrosis
- Frameshift mutation
- Hemiparesis
- Jacksonian seizure
- Necrotic
- Necrosis
- Papilledema
- Perivascular
- Retinopathy
- Telangiectasia
- Vasculopathy
- Vascular
What AD-RVCL is not:
- Infection
- Cancer
- Diabetes
- Glaucoma
- Hypertension
- A neurological disorder
- Muscular dystrophy
- Systemic Lupus Erythematosis (SLE)
- Vasculitis
Things that have been tried but turned out to be ineffective or even make things worse:
- Antibiotics
- Steroids
- X-Ray therapy
- Immunosuppression
History of AD-RVCL (CRV)
- 1985 – 1988: CRV (Cerebral Retinal Vasculopathy) was discovered by John P. Atkinson, MD at Washington University School of Medicine in St. Louis, MO
- 1988: 10 families worldwide were identified as having CRV
- 1991: Related disease reported, HERNS (Hereditary Endiotheliopathy with Retinopathy, Nephropathy and Stroke – UCLA
- 1998: Related disease reported, HRV (Hereditary Retinal Vasculopathy) – Leiden University, Netherlands
- 2001: Localized to Chromosome 3.
- 2007: The specific genetic defect in all of these families was discovered in a single gene called TREX1
- 2008: Name changed to AD-RVCL Autosomal Dominant-Retinal Vasculopathy with Cerebral Leukodystrophy
- 2009: Testing for the disease available to persons 21 and older
- 2011: 20 families worldwide were identified as having CRV
- 2012: Obtained mouse models for further research and to test therapeutic agents