Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Females are affected more than males, and the condition occurs in permanent (adult) teeth more than deciduous (baby teeth or milk teeth).
The cause of isolated missing teeth remains unclear, but the condition is believed to be associated with genetic or environmental factors during dental development. Missing teeth have been reported in association with increased maternal age, low birth weight, multiple births and rubella virus infection during embryonic life.
There is a possible correlation between tooth agenesis and innervation. A relationship was also postulated between abnormalities of the brainstem and the presence of agenesis.
Hypodontia is often familial, and can also be associated with genetic disorders such as ectodermal dysplasia or Down syndrome. Hypodontia can also be seen in people with cleft lip and palate.
Among the possible causes are mentioned genetic, hormonal, environmental and infectious.
Cause due to hormonal defects: idiopathic hypoparathyroidism and pseudohypoparathyroidism. Exists the possibility that this defect depends on a moniliasis (candidiasis, "candida endocrinopathy syndrome").
Environmental causes involving exposure to PCBs (ex.dioxin), radiation, anticancer chemotherapeutic agents, allergy and toxic epidermal necrolysis after drug.
Infectious causes of hypodontia: rubella, candida.
The Journal of the American Dental Association published preliminary data suggesting a statistical association between hypodontia of the permanent teeth and epithelial ovarian cancer (EOC). The study shows that women with EOC are 8.1 times more likely to have hypodontia than are women without EOC. The suggestion therefore is that hypodontia can serve as a "marker" for potential risk of EOC in women.
Also the increased frequency of hypodontia in twins and low birth weight in twins with hypodontia suggests that environmental factors during perinatal are responsible hypodontia.
In the 1960s and 1970s, several studies were conducted sponsored by the U.S. Atomic Energy Commission, with the aim of finding a link between genetics and hypodontia.
The cause of germination is still unknown. However, there are a few possible factors contributing to germination:
- Vitamin deficiency
- Hormonal irregularities
- Infection or inflammation of areas near to the developing tooth bud
- Drug induced
- Genetic predisposition
- Radiotherapy that caused damage to the developing tooth germ
Some researchers suggest that HGF is transmitted as a Mendelian trait since both autosomal dominant and autosomal recessive transmission has been reported since the early 1970s. (SOURCE 1) In more recent scientific literature, there is evidence in which pedigree analyses confirm autosomal dominant, autosomal recessive or even as X-linked inherited cases of the HGF trait.
In 2002, researchers described the SOS1 gene and proved for the first time that a single-nucleotide–insertion mutation of the SOS1 gene on codon 1083 is the preliminary cause of HGF1 in humans. (Source 1) Later on in 2010, there was a case study done on a 16-year-old male with severe gingival overgrowth, almost covering all teeth. Researchers approached this issue with periodontics - a partial gingivectomy and flap surgery. This case study concluded that surgery followed by regular follow-ups is a good way to treat HGF despite the fact that the risks of re-occurrence of the condition remain high.
Even more recently, a study was done in 2013 on a family that showed history of autosomal recessive inheritance of HGF. The study did not dismiss the return of HGF after treatment but did claim that general surgical intervention after scaling and root planning of teeth supplemented with good oral hygiene is good enough to prevent the re-occurrence of HGF. This case study also acknowledged how HGF can be part of a multi-system syndrome associated with disorders such as Zimmermann Laband syndrome (ear, nose, bone, and nail defects with hepatosplenomegaly), Rutherford syndrome (microphthalmia, mental retardation, athetosis, and hypopigmentation), Murray-Puretic Drescher syndrome and Ramon syndrome.
Can be caused by many things. A way to remember the causes is "PIG ON TAP"
Local factors-
- Occlusal Trauma
- Trauma
- Non-functional tooth
- Unopposed tooth (and impacted teeth, embedded teeth, teeth without antagonists)
Systemic factors-
- Idiopathic
- Pituitary Gigantism
- Paget's Disease
- Acromegaly
- Periapical granuloma
- Arthritis
- Calcinosis
- Rheumatic fever
It may be one of the complications of Paget's disease of bone in the form of generalized hypercementosis.
It may also be a compensatory mechanism in response to attrition to increase occlusal tooth height.
There are many potential factors involved.
- Congenital hypopituitarism
- Ectodermal dysplasia
- Down syndrome
- Ionizing radiation to the jaws during tooth development (odontogenesis)
- Chemotherapy during tooth development
- Marshall syndrome
- Rieger syndrome
- Focal dermal hypoplasia
- Silver-Russell syndrome
- Williams syndrome
- Gorlin-Chaudhry-Moss syndrome
- Coffin–Siris syndrome
- Salamon syndrome
- Cleft lip and palate
Others include trichorhinopharyngeal, odontotrichomelic, neuroectodermal and dermo-odontodysplasia syndromes.
Natal teeth are teeth that are present above the gumline (have already erupted) at birth, and neonatal teeth are teeth that emerge through the gingiva during the first month of life (the neonatal period).
The incidence of neonatal teeth varies considerably, between 1:700 and 1:30,000 depending on the type of study; the highest prevalence is found in the only study that relies on personal examination of patients.
Before root canal treatment or extraction are carried out, the clinician should have thorough knowledge about the root canal morphology to avoid complications.
Most of the time, natal teeth are not related to a medical condition. However, sometimes they may be associated with:
- Ellis–van Creveld syndrome
- Hallermann–Streiff syndrome
- Pierre Robin syndrome
- Sotos syndrome
HGF1 - Caused by a mutation in the SOS1 gene localized on chromosome 2p21-p22
HGF2 - Caused by a mutation in the SOS1 gene localized on chromosome 5q13-q22
Mutations in the RE1-silencing transcription factor (REST) gene can also cause this syndrome.
- Non genetic
HGF may also be caused by unwanted side effects of pharmacological agents like phenytoin, ciclosporin, and some calcium-channel blockers, meaning HGF is a disease that can be drug-induced. However, there is little next to no research done in this area to support the claim.
- Inflammation
- Hormonal Imbalance
- Neoplasia
- More commonly associated with an autosomal dominant gene inheritance
- Multi-system syndromes: Zimmerman-Laband syndrome, Jones syndrome, Ramon syndrome, Rutherford syndrome, juvenile hyaline fibromatosis, systemic infantile hyalinosis, and mannosidosis
- Some unknown causes
Although the etiology is unclear and it is speculated to be multifactorial. Contributing factors may include the following:
1. children born preterm and those with poor general health or systemic conditions in their first 3 years may develop MIH.
2. environmental changes
3. exposure to dioxine by prolonged breast-feeding could lead to an increase in the risk of MIH
4. respiratory diseases and oxygen shortage of the ameloblasts
5. oxygen shortage combined with low birth weight
Prosthetic replacement of missing teeth is possible using dental implant technology or dentures. This treatment can be successful in giving patients with anodontia a more aesthetically pleasing appearance. The use of an implant prosthesis in the lower jaw could be recommended for younger patients as it is shown to significantly improve the craniofacial growth, social development and self-image. The study associated with this evidence worked with individuals who had ectodermal dysplasia of varying age groups of up to 11, 11 to 18 and more than 18 years. It was noted that the risk of implant failure was significantly higher in patients younger than 18 years, but there is significant reason to use this methodology of treatment in those older. Overall the use of an implant-prosthesis has a considerable functional, aesthetic and psychological advantage when compared to a conventional denture, in the patients.
Macrodontia of a single tooth is attributed to a disturbance of morphodifferentiation. Generalized macrodontia is usually attributed to some hormonal imbalance (e.g., pituirary gigantism). It can also be associated with facial hemihyperplasia. Macrodontia stems from systematic disturbances. These include KBG syndrome, otodental syndrome, and insulin-resistant diabetes. Ethnicity and gender also factors that influence macrodontia. Asians and males are more likely to be effected.
Such deposits form bulbous enlargements on the roots and may interfere with extractions, especially if adjacent teeth become fused (concrescence). It may also result in pulpal necrosis by blocking blood supply via the apical foramen.
The etiology, or cause of edentulism, can be multifaceted. While the extraction of non-restorable or non-strategic teeth by a dentist does contribute to edentulism, the predominant cause of tooth loss in developed countries is periodontal disease. While the teeth may remain completely decay-free, the bone surrounding and providing support to the teeth may reabsorb and disappear, giving rise to tooth mobility and eventual tooth loss. In the radiograph at the beginning of the article, tooth #21 (the lower left first premolar, to the right of #22, the lower left canine) exhibits 50% bone loss, presenting with a distal horizontal defect and a mesial vertical defect. Tooth #22 exhibits roughly 30% bone loss.
Taurodontism is a condition found in the molar teeth of humans whereby the body of the tooth and pulp chamber is enlarged vertically at the expense of the roots. As a result, the floor of the pulp and the furcation of the tooth is moved apically down the root. The underlying mechanism
of taurodontism is the failure or late invagination of Hertwig's epithelial root sheath, which is responsible for root formation and shaping causing an apical shift of the root furcation.
The constriction at the amelocemental junction is usually reduced or absent. Taurodontism is most commonly found in permanent dentition although the term is traditionally applied to molar teeth.
In some cases taurodontism seems to follow an autosomal dominant type of inheritance.
Taurodontism is found in association with amelogenesis imperfecta, ectodermal dysplasia and tricho-dento-osseous syndrome.
The term means "bull like" teeth derived from similarity of these teeth to those of ungulate or cud-chewing animals.
According to Shaw these can be classified as hypotaurodont, hypertaurodont and mesotaurodont.
According to Mangion taurodontism may be:
- A (mentally retarded) character
- A primitive pattern
- Mendelian recessive character
- Atavistic feature
- A mutation
It has also been reported in Klinefelter's syndrome, XXYY and Down's syndrome .
The teeth involved are invariably molars, sometimes single and at the other times multiple teeth may be involved. The teeth themselves may look normal and do not have any particular anatomical character on clinical examination.
On a dental radiograph, the involved tooth looks rectangular in shape without apical taper. The pulp chamber is extremely large and the furcations may be only a few millimeters long at times.
The mutation in collagen type 1 (COL1 A1, COL1 A2) causes DI-1. It is similar to the systemic condition dental features known as osteogenesis imperfect. DI-2, DI-3 and DD-2 share the same genetic mutation of dentin sialophosphoprotein, that is located on chromosome 4. They are autosomal-dominant diseases with complete penetrance and variable expressivity. Due to the same genetic mutation, these diseases would often result in overlapping clinical and radiographic features. Therefore, prevailing theories suggests that DI-2, DI-3 and DD-2 are categorized as a single disease entity with variable severity of expression. However, the causes of DD-1 have yet to be theorized.
Omphalocele has been described in two patients with Apert syndrome by Herman T.E. et al. (USA, 2010) and by Ercoli G. et al. (Argentina, 2014). An omphalocele is a birth defect in which an intestine or other abdominal organs are outside of the body of an infant because of a hole in the bellybutton area. However, the association between omphalocele and Apert syndrome is not confirmed yet, so additional studies are necessary.
Literature states that very few crossbites tend to self-correct which often justify the treatment approach of correcting these bites as early as possible. Only 0–9% of crossbites self-correct. Lindner et al. reported that in a 50% of crossbites were corrected in 76 four year old children.
There have been many syndromes which have been identified to be related to failure of eruption of teeth. These syndromes are Cleidocranial dyspalsia, Osteoporosis, Rutherford syndrome, GAPO syndrome and Osteoglophonic dysplasia.
Treatment and prognosis are usually based upon keeping these teeth and preserving the alveolus. For erupted teeth, endodontics is an option if the tooth is devitalized and restorable. For unerupted teeth, function can be restored with a removable partial denture until all major growth has been completed and a final restoration can be placed.
Papillon–Lefèvre syndrome (PLS), also known as palmoplantar keratoderma with periodontitis, is an autosomal recessive genetic disorder caused by a deficiency in cathepsin C.
Extra teeth, lost teeth, impacted teeth, or abnormally shaped teeth have been cited as causes of malocclusion. A small underdeveloped jaw, caused by lack of masticatory stress during childhood, can cause tooth overcrowding. Ill-fitting dental fillings, crowns, appliances, retainers, or braces as well as misalignment of jaw fractures after a severe injury are other causes. Tumors of the mouth and jaw, thumb sucking, tongue thrusting, pacifier use beyond age 3, and prolonged use of a bottle have also been identified as causes.
In an experiment on two groups of rock hyraxes fed hardened or softened versions of the same foods, the animals fed softer food had significantly narrower and shorter faces and thinner and shorter mandibles than animals fed hard food. Experiments have shown similar results in other animals, including primates, supporting the theory that masticatory stress during childhood affects jaw development. Several studies have shown this effect in humans. Children chewed a hard resinous gum for two hours a day and showed increased facial growth.
During the transition to agriculture, the shape of the human mandible went through a series of changes. The mandible underwent a complex series of shape changes not matched by the teeth, leading to incongruity between dental and mandibular form. These changes in human skulls may have been "driven by the decreasing bite forces required to chew the processed foods eaten once humans switched to growing different types of cereals, milking and herding animals about 10,000 years ago."
There is evidence of hereditary factors along with some evidence of environmental factors leading to this condition. While a single excess tooth is relatively common, multiple hyperdontia is rare in people with no other associated diseases or syndromes. Many supernumerary teeth never erupt, but they may delay eruption of nearby teeth or cause other dental or orthodontic problems. Molar-type extra teeth are the rarest form. Dental X-rays are often used to diagnose hyperdontia.
It is suggested that supernumerary teeth develop from a third tooth bud arising from the dental lamina near the regular tooth bud or possibly from splitting the regular tooth bud itself. Supernumerary teeth in deciduous (baby) teeth are less common than in permanent teeth.