Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Tuberculous meningitis is also known as TB meningitis or tubercular meningitis. Tuberculous meningitis is "Mycobacterium tuberculosis" infection of the meninges—the system of membranes which envelop the central nervous system.
A study conducted on 452 patients revealed that the genotype responsible for higher IL-10 expression makes HIV infected people more susceptible to tuberculosis infection. Another study on HIV-TB co-infected patients also concluded that higher level of IL-10 and IL-22 makes TB patient more susceptible to Immune reconstitution inflammatory syndrome (IRIS). It is also seen that HIV co-infection with tuberculosis also reduces concentration of immunopathogenic matrix metalloproteinase (MMPs) leading to reduced inflammatory immunopathology.
The treatment of TB meningitis is isoniazid, rifampicin, pyrazinamide and ethambutol for two months, followed by isoniazid and rifampicin alone for a further ten months. Steroids help reduce the risk of death in those without HIV. Steroids can be used in the first six weeks of treatment, A few people may require immunomodulatory agents such as thalidomide. Hydrocephalus occurs as a complication in about a third of people with TB meningitis. The addition of aspirin may reduce or delay mortality, possibly by reducing complications such as infarcts.
When HIV-negative children take isoniazid after they have been exposed to tuberculosis, their risk to contract tuberculosis is reduced. A Cochrane review investigated whether giving isoniazid to HIV-positive children can help to prevent this vulnerable group from getting tuberculosis. They included three trials conducted in South Africa and Botswana and found that isoniazid given to all children diagnosed with HIV may reduce the risk of active tuberculosis and death in children who are not on antiretroviral treatment. For children taking antiretroviral medication, no clear benefit was detected.
Studies have found that men have a higher risk of getting XDR-TB than women. One study showed that the male to female ratio was more than threefold, with statistical relevance (P<0.05) Studies done on the effect of age and XDR-TB have revealed that individuals who are 65 and up are less likely to get XDR-TB. A study in Japan found that XDR-TB patients are more likely to be younger.
Persons with component deficiencies in the final common complement pathway (C3,C5-C9) are more susceptible to "N. meningitidis" infection than complement-satisfactory persons, and it was estimated that the risk of infection is 7000 times higher in such individuals. In addition, complement component-deficient populations frequently experience frequent meningococcal disease since their immune response to natural infection may be less complete than that of complement non-deficient persons.
Inherited properdin deficiency also is related, with an increased risk of contracting meningococcal disease. Persons with functional or anatomic asplenia may not efficiently clear encapsulated "Neisseria meningitidis" from the bloodstream Persons with other conditions associated with immunosuppression also may be at increased risk of developing meningococcal disease.
TB is one of the most common infections in people living with HIV/AIDS. In places where XDR-TB is most common, people living with HIV are at greater risk of becoming infected with XDR-TB, compared with people without HIV, because of their weakened immunity. If there are a lot of HIV-infected people in these places, then there will be a strong link between XDR-TB and HIV. Fortunately, in most of the places with high rates of HIV, XDR-TB is not yet widespread. For this reason, the majority of people with HIV who develop TB will have drug-susceptible or ordinary TB, and can be treated with standard first-line anti-TB drugs. For those with HIV infection, treatment with antiretroviral drugs will likely reduce the risk of becoming infected with XDR-TB, just as it does with ordinary TB.
A research study titled "TB Prevalence Survey and Evaluation of Access to TB Care in HIV-Infected and Uninfected TB Patients in Asembo and Gem, Western Kenya", says that HIV/AIDS is fueling large increases in TB incidence in Africa, and a large proportion of cases are not diagnosed.
A number of factors make people more susceptible to TB infections. The most important risk factor globally is HIV; 13% of all people with TB are infected by the virus. This is a particular problem in sub-Saharan Africa, where rates of HIV are high. Of people without HIV who are infected with tuberculosis, about 5–10% develop active disease during their lifetimes; in contrast, 30% of those coinfected with HIV develop the active disease.
Tuberculosis is closely linked to both overcrowding and malnutrition, making it one of the principal diseases of poverty. Those at high risk thus include: people who inject illicit drugs, inhabitants and employees of locales where vulnerable people gather (e.g. prisons and homeless shelters), medically underprivileged and resource-poor communities, high-risk ethnic minorities, children in close contact with high-risk category patients, and health-care providers serving these patients.
Chronic lung disease is another significant risk factor. Silicosis increases the risk about 30-fold. Those who smoke cigarettes have nearly twice the risk of TB compared to nonsmokers.
Other disease states can also increase the risk of developing tuberculosis. These include alcoholism and diabetes mellitus (three-fold increase).
Certain medications, such as corticosteroids and infliximab (an anti-αTNF monoclonal antibody), are becoming increasingly important risk factors, especially in the developed world.
Genetic susceptibility also exists, for which the overall importance remains undefined.
HIV-infected children less than 12 years of age also develop disseminated MAC. Some age adjustment is necessary when clinicians interpret CD4+ T-lymphocyte counts in children less than 2 years of age. Diagnosis, therapy, and prophylaxis should follow recommendations similar to those for adolescents and adults.
Fungi and parasites may also cause the disease. Fungi and parasites are especially associated with immunocompromised patients. Other causes include: "Nocardia asteroides", "Mycobacterium", Fungi (e.g. "Aspergillus", "Candida", "Cryptococcus", "Mucorales", "Coccidioides", "Histoplasma capsulatum", "Blastomyces dermatitidis", "Bipolaris", "Exophiala dermatitidis", "Curvularia pallescens", "Ochroconis gallopava", "Ramichloridium mackenziei", "Pseudallescheria boydii"), Protozoa (e.g. "Toxoplasma gondii", "Entamoeba histolytica", "Trypanosoma cruzi", "Schistosoma", "Paragonimus"), and Helminths (e.g. "Taenia solium"). Organisms that are most frequently associated with brain abscess in patients with AIDS are poliovirus, "Toxoplasma gondii", and "Cryptococcus neoformans", though in infection with the latter organism, symptoms of meningitis generally predominate.
These organisms are associated with certain predisposing conditions:
- Sinus and dental infections—Aerobic and anaerobic streptococci, anaerobic gram-negative bacilli (e.g. "Prevotella", "Porphyromonas", "Bacteroides"), "Fusobacterium", "S. aureus", and Enterobacteriaceae
- Penetrating trauma—"S. aureus", aerobic streptococci, Enterobacteriaceae, and "Clostridium" spp.
- Pulmonary infections—Aerobic and anaerobic streptococci, anaerobic gram-negative bacilli (e.g. "Prevotella", "Porphyromonas", "Bacteroides"), "Fusobacterium", "Actinomyces", and "Nocardia"
- Congenital heart disease—Aerobic and microaerophilic streptococci, and "S. aureus"
- HIV infection—"T. gondii", "Mycobacterium", "Nocardia", "Cryptococcus", and "Listeria monocytogenes"
- Transplantation—"Aspergillus", "Candida", "Cryptococcus", "Mucorales", "Nocardia", and "T. gondii"
- Neutropenia—Aerobic gram-negative bacilli, "Aspergillus", "Candida", and "Mucorales"
If left untreated, miliary tuberculosis is almost always fatal. Although most cases of miliary tuberculosis are treatable, the mortality rate among children with miliary tuberculosis remains 15 to 20% and for adults 25 to 30%. One of the main causes for these high mortality rates includes late detection of disease caused by non-specific symptoms. Non-specific symptoms include: coughing, weight loss, or organ dysfunction. These symptoms may be implicated in numerous disorders, thus delaying diagnosis. Misdiagnosis with tuberculosis meningitis is also a common occurrence when patients are tested for tuberculosis, since the two forms of tuberculosis have high rates of co-occurrence.
Progression from TB infection to overt TB disease occurs when the bacilli overcome the immune system defenses and begin to multiply. In primary TB disease (some 1–5% of cases), this occurs soon after the initial infection. However, in the majority of cases, a latent infection occurs with no obvious symptoms. These dormant bacilli produce active tuberculosis in 5–10% of these latent cases, often many years after infection.
The risk of reactivation increases with immunosuppression, such as that caused by infection with HIV. In people coinfected with "M. tuberculosis" and HIV, the risk of reactivation increases to 10% per year. Studies using DNA fingerprinting of "M. tuberculosis" strains have shown reinfection contributes more substantially to recurrent TB than previously thought, with estimates that it might account for more than 50% of reactivated cases in areas where TB is common. The chance of death from a case of tuberculosis is about 4% as of 2008, down from 8% in 1995.
Death occurs in about 10% of cases and people do well about 70% of the time. This is a large improvement from the 1960s due to improved ability to image the head, better neurosurgery and better antibiotics.
Meningitis A,C,Y and W-135 vaccines can be used for large-scale vaccination programs when an outbreak of meningococcal disease occurs in Africa and other regions of the world. Whenever sporadic or cluster cases or outbreaks of meningococcal disease occur in the US, chemoprophylaxis is the principal means of preventing secondary cases in household and other close contacts of individuals with invasive disease. Meningitis A,C,Y and W-135 vaccines rarely may be used as an adjunct to chemoprophylaxis,1 but only in situations where there is an ongoing risk of exposure (e.g., when cluster cases or outbreaks occur) and when a serogroup contained in the vaccine is involved.
It is important that clinicians promptly report all cases of suspected or confirmed meningococcal disease to local public health authorities and that the serogroup of the meningococcal strain involved be identified. The effectiveness of mass vaccination programs depends on early and accurate recognition of outbreaks. When a suspected outbreak of meningococcal disease occurs, public health authorities will then determine whether mass vaccinations (with or without mass chemoprophylaxis) is indicated and delineate the target population to be vaccinated based on risk assessment.
MAI is common in immunocompromised individuals, including senior citizens and those with HIV/AIDS or cystic fibrosis. Bronchiectasis, the bronchial condition which causes unnatural enlargement of the bronchial tubes, is commonly found with MAI infection. Whether the bronchiectasis leads to the MAC infection or is the result of it is not always known.
The "Mycobacterium avium complex" (MAC) includes common atypical bacteria, i.e. nontuberculous mycobacteria (NTM), found in the environment which can infect people with HIV and low CD4 cell count (below 100/microliter); mode of infection is usually inhalation or ingestion.
MAC causes disseminated disease in up to 40% of people with human immunodeficiency virus (HIV) in the United States, producing fever, sweats, weight loss, and anemia. Disseminated MAC characteristically affects people with advanced HIV disease and peripheral CD4+ T-lymphocyte counts less than 100 cells/uL. Effective prevention and therapy of MAC has the potential to contribute substantially to improved quality of life and duration of survival for HIV-infected persons.
Disease can arise if the host's protective immune mechanisms are compromised and the organism inflicts damage on the host. Microorganisms can cause tissue damage by releasing a variety of toxins or destructive enzymes. For example, Clostridium tetani releases a toxin that paralyzes muscles, and staphylococcus releases toxins that produce shock and sepsis. Not all infectious agents cause disease in all hosts. For example, less than 5% of individuals infected with polio develop disease. On the other hand, some infectious agents are highly virulent. The prion causing mad cow disease and Creutzfeldt–Jakob disease invariably kills all animals and people that are infected.
Persistent infections occur because the body is unable to clear the organism after the initial infection. Persistent infections are characterized by the continual presence of the infectious organism, often as latent infection with occasional recurrent relapses of active infection. There are some viruses that can maintain a persistent infection by infecting different cells of the body. Some viruses once acquired never leave the body. A typical example is the herpes virus, which tends to hide in nerves and become reactivated when specific circumstances arise.
Persistent infections cause millions of deaths globally each year. Chronic infections by parasites account for a high morbidity and mortality in many underdeveloped countries.
For infecting organisms to survive and repeat the infection cycle in other hosts, they (or their progeny) must leave an existing reservoir and cause infection elsewhere. Infection transmission can take place via many potential routes:
- Droplet contact, also known as the "respiratory route", and the resultant infection can be termed airborne disease. If an infected person coughs or sneezes on another person the microorganisms, suspended in warm, moist droplets, may enter the body through the nose, mouth or eye surfaces.
- Fecal-oral transmission, wherein foodstuffs or water become contaminated (by people not washing their hands before preparing food, or untreated sewage being released into a drinking water supply) and the people who eat and drink them become infected. Common fecal-oral transmitted pathogens include "Vibrio cholerae", "Giardia" species, rotaviruses, "Entameba histolytica", "Escherichia coli", and tape worms. Most of these pathogens cause gastroenteritis.
- Sexual transmission, with the resulting disease being called sexually transmitted disease
- Oral transmission, Diseases that are transmitted primarily by oral means may be caught through direct oral contact such as kissing, or by indirect contact such as by sharing a drinking glass or a cigarette.
- Transmission by direct contact, Some diseases that are transmissible by direct contact include athlete's foot, impetigo and warts
- Vehicle Transmission, transmission by an inanimate reservoir (food, water, soil).
- Vertical transmission, directly from the mother to an embryo, fetus or baby during pregnancy or childbirth. It can occur when the mother gets an infection as an intercurrent disease in pregnancy.
- Iatrogenic transmission, due to medical procedures such as injection or transplantation of infected material.
- Vector-borne transmission, transmitted by a vector, which is an organism that does not cause disease itself but that transmits infection by conveying pathogens from one host to another.
The relationship between "virulence versus transmissibility" is complex; if a disease is rapidly fatal, the host may die before the microbe can be passed along to another host.
Patients with miliary tuberculosis often experience non-specific signs, such as coughing and enlarged lymph nodes. Miliary tuberculosis can also present with enlarged liver (40% of cases), enlarged spleen (15%), inflammation of the pancreas (<5%), and multiple organ dysfunction with adrenal insufficiency (adrenal glands do not produce enough steroid hormones to regulate organ function). Miliary tuberculosis may also present with unilateral or bilateral pneumothorax rarely. Stool may also be diarrheal in nature and appearance.
Other symptoms include fever, hypercalcemia, chorodial tubercles and cutaneous lesions.
Firstly, many patients can experience a fever lasting several weeks with daily spikes in morning temperatures.
Secondly, hypercalcemia prevails in 16 to 51% of tuberculosis cases. It is thought that hypercalcemia occurs as a response to increased macrophage activity in the body. Such that, 1,25 dihydroxycholecalciferol (also referred to as calcitriol) improves the ability of macrophages to kill bacteria; however, higher levels of calcitriol lead to higher calcium levels, and thus hypercalcemia in some cases. Thus, hypercalcemia proves to be an important symptom of miliary tuberculosis.
Thirdly, chorodial tubercules, pale lesions on the optic nerve, typically indicate miliary tuberculosis in children. These lesions may occur in one eye or both; the number of lesions varies between patients. Chorodial tubercules may serve as important symptoms of miliary tuberculosis, since their presence can often confirm suspected diagnosis.
Lastly, between 10 and 30% of adults, and 20–40% of children with miliary tuberculosis have tuberculosis meningitis. This relationship results from myobacteria from miliary tuberculosis spreading to the brain and the subarachnoid space; as a result, leading to tuberculosis meningitis.
The risk factors for contracting miliary tuberculosis are being in direct contact with a person who has it, living in unsanitary conditions, and having an unhealthy diet. In the U.S., risk factors for contracting the disease include homelessness and HIV/AIDS.
"TB Bacteria Are Spread Only from a Person with Active TB Disease ... In people who develop active TB of the lungs, also called pulmonary TB, the TB skin test will often be positive. In addition, they will show all the signs and symptoms of TB disease, and can pass the bacteria to others. So, if a person with TB of the lungs sneezes, coughs, talks, sings, or does anything that forces the bacteria into the air, other people nearby may breathe in TB bacteria. Statistics show that approximately one-third of people exposed to pulmonary TB become infected with the bacteria, but only one in ten of these infected people develop active TB disease during their lifetimes."
However, exposure to tuberculosis is very unlikely to happen when one is exposed for a few minutes in a store or in a few minutes social contact. "It usually takes prolonged exposure to someone with active TB disease for someone to become infected.
After exposure, it usually takes 8 to 10 weeks before the TB test would show if someone had become infected." "Depending on ventilation and other factors, these tiny droplets [from the person who has active tuberculosis] can remain suspended in the air for several hours. Should another person inhale them, he or she may become infected with TB. The probability of transmission will be related to the infectiousness of the person with TB, the environment where the exposure occurred, the duration of the exposure, and the susceptibility of the host." In fact, "it isn't easy to catch TB. You need consistent exposure to the contagious person for a long time. For that reason, you're more likely to catch TB from a relative than a stranger."
If a person had latent tuberculosis, they do not have active/contagious tuberculosis. Once exposed, people very often have latent tuberculosis. To convert to active tuberculosis, the bacteria must become active.
People have medical privacy or "confidentiality" and do not have to reveal their active tuberculosis case to family, friends, or co-workers; therefore, the person who gets latent tuberculosis may never know who had the active case of tuberculosis that caused the latent tuberculosis diagnosis for them. Only by required testing (required in some jobs)
A diagnosis of latent tuberculosis (LTB), also called latent tuberculosis infection (LTBI) means a patient is infected with "Mycobacterium tuberculosis", but the patient does not have active tuberculosis. Active tuberculosis can be contagious while latent tuberculosis is not, and it is therefore not possible to get TB from someone with latent tuberculosis. The main risk is that approximately 10% of these patients (5% in the first two years after infection and 0.1% per year thereafter) will go on to develop active tuberculosis. This is particularly true, and there is added risk, in particular situations such as medication that suppresses the immune system or advancing age.
The identification and treatment of people with latent TB is an important part of controlling this disease. Various treatment regimens are in use to treat latent tuberculosis, which generally need to be taken for several months.
Lupus systemic erythematosus is one of the most common causes of cerebritis as it is believed that more than half of the patients with lupus from the United States suffer from a degree or another of lupus cerebritis.
The exact pathophysiological process of lupus cerebritis is unknown. The proposed mechanisms are likely due to the assault of several autoimmune system changes, including the following:
- Circulating immune complexes. The immune complexes, which consist of DNA and anti-DNA, cause an inflammatory response as well as a disruption of the blood–brain barrier. These circulating complexes have been found trapped in the highly vascular choroid plexus of SLE patients upon autopsy. True vasculitis, however, is found only in about 10% of patients with cerebral lupus.
- Anti-neuronal antibodies. The three identified anti-neuronal antibodies postulated in CNS involvement are the lympho-cytotoxic antibodies (LCAs), which somehow react with brain tissue and interfere with the neuron's ability to respond. LCAs have a specific role and are found in both the serum and cerebrospinal fluid (CSF) of lupus patients with cerebritis. These antibodies also correlate with cognitive and visual spatial defects. Second, the anti-neuronal membrane antibodies are targeted directly to neuronal antigens. They, too, are found in the serum of SLE patients with cerebritis. And third, the intracytoplasmic antibodies target the constituents of the neuron cells and they are found in the CSF and serum. These antibodies are seen in 90% of SLE patients with psychosis.
- Antiphospholipid antibodies. The two antibodies implicated are anticardiolipin and lupus anticoagulant. Anticardiolipin antibodies attach to the endothelial lining of cells, causing endothelial damage, platelet aggregation, inflammation, and fibrosis.
- Cytokine release. The final mechanism of lupus cerebritis involves the cytokines. The cytokines trigger edema, endothelial thickening, and infiltration of neutrophils in brain tissue. Two cytokines, interferon alpha and interleukin-6, have been found in the CSF of SLE patients with psychosis.
However, it is not clear which mechanism is the actual cause of cerebritis in lupus patients. Specialists believe that all mechanisms may be present at the same time or they may act independently.
In very rare cases, cerebritis may occur as a result of a Klebsiella pneumoniae infection.
One other reason to develop cerebritis is an infection caused by bacteria, viruses, or other organisms. Infections can occur when infectious agents enter the brain through the sinuses or as a result of trauma. Some pathogens are also capable of passing over the blood–brain barrier and entering the brain through the bloodstream, despite the fact that the body has evolved defenses which are specifically designed to prevent this.
Lupus is a condition with no known cure. Lupus cerebritis however is treated by suppressing the autoimmune activity.
When it is caused by infections, treatment consists of medication that will primarily cure the infection. For inflammation, steroids can be used to bring down the swelling. If the swelling appears to have increased to a dangerous level, surgery may be needed to relieve pressure on the brain. The formation of an abscess also calls for surgery as it will be necessary to drain the abscess.
Cases of MDR tuberculosis have been reported in every country surveyed. MDR-TB most commonly develops in the course of TB treatment, and is most commonly due to doctors giving inappropriate treatment, or patients missing doses or failing to complete their treatment. Because MDR tuberculosis is an airborne pathogen, persons with active, pulmonary tuberculosis caused by a multidrug-resistant strain can transmit the disease if they are alive and coughing. TB strains are often less fit and less transmissible, and outbreaks occur more readily in people with weakened immune systems (e.g., patients with HIV). Outbreaks among non immunocompromised healthy people do occur, but are less common.
As of 2013, 3.7% of new tuberculosis cases have MDR-TB. Levels are much higher in those previously treated for tuberculosis - about 20%. WHO estimates that there were about 0.5 million new MDR-TB cases in the world in 2011. About 60% of these cases occurred in Brazil, China, India, the Russian Federation and South Africa alone. In Moldova, the crumbling health system has led to the rise of MDR-TB. In 2013, the Mexico–United States border was noted to be "a very hot region for drug resistant TB", though the number of cases remained small.
It has been known for many years that INH-resistant TB is less virulent in guinea pigs, and the epidemiological evidence is that MDR strains of TB do not dominate naturally. A study in Los Angeles, California found that only 6% of cases of MDR-TB were clustered. Likewise, the appearance of high rates of MDR-TB in New York City in the early 1990s was associated with the explosion of AIDS in that area. In New York City, a report issued by city health authorities states that fully 80 percent of all MDR-TB cases could be traced back to prisons and homeless shelters. When patients have MDR-TB, they require longer periods of treatment—about two years of multidrug regimen. Several of the less powerful second-line drugs, which are required to treat MDR-TB, are also more toxic, with side effects such as nausea, abdominal pain, and even psychosis. The Partners in Health team had treated patients in Peru who were sick with strains that were resistant to ten and even twelve drugs. Most such patients require adjuvant surgery for any hope of a cure.
There are several elements of the Russian prison system that enable the spread of MDR-TB and heighten its severity. Overcrowding in prisons is especially conducive to the spread of tuberculosis; an inmate in a prison hospital has (on average) 3 meters of personal space, and an inmate in a correctional colony has 2 meters. Specialized hospitals and treatment facilities within the prison system, known as TB colonies, are intended to isolate infected prisoners to prevent transmission; however, as Ruddy et al. demonstrate, there are not enough of these colonies to sufficiently protect staff and other inmates. Additionally, many cells lack adequate ventilation, which increases likelihood of transmission. Bobrik et al. have also noted food shortages within prisons, which deprive inmates of the nutrition necessary for healthy functioning.
Comorbidity of HIV within prison populations has also been shown to worsen health outcomes. Nachega & Chaisson articulate that while HIV-infected prisoners are not more susceptible MDR-TB infection, they are more likely to progress to serious clinical illness if infected. According to Stern, HIV infection is 75 times more prevalent in Russian prison populations than in the civilian population. Therefore, prison inmates are both more likely to become infected with MDR-TB initially and to experience severe symptoms because of previous exposure to HIV.
Shin et al. emphasize another factor in MDR-TB prevalence in Russian prisons: alcohol and substance use. Ruddy et al. showed that risk for MDR-TB is three times higher among recreational drug users than non-users. Shin et al.’s study demonstrated that alcohol usage was linked to poorer outcomes in MDR-TB treatment; they also noted that a majority of subjects within their study (many of whom regularly used alcohol) were nevertheless cured by their aggressive treatment regimen.
Non-compliance with treatment plans is often cited as a contributor to MDR-TB transmission and mortality. Indeed, of the 80 newly-released TB-infected inmates in Fry et al.’s study, 73.8% did not report visiting a community dispensary for further treatment. Ruddy et al. cite release from facilities as one of the main causes of interruption in prisoner’s TB treatment, in addition to non-compliance within the prison and upon reintegration into civilian life. Fry et al.’s study also listed side effects of TB treatment medications (especially in HIV positive individuals), financial worries, housing insecurities, family problems, and fear of arrest as factors that prevented some prisoners from properly adhering to TB treatment. They also note that some researchers have argued that the short-term gains TB-positive prisoners receive, such as better food or work exclusion, may dis-incentivize becoming cured. In their World Health Organization article, Gelmanova et al. posit that non-adherence to TB treatment indirectly contributes to bacterial resistance. Although ineffective or inconsistent treatment does not “create” resistant strains, mutations within the high bacterial load in non-adherent prisoners can cause resistance.
Nachega & Chaisson argue that inadequate TB control programs are the strongest driver of MDR-TB incidence. They note that prevalence of MDR-TB is 2.5 times higher in areas of poorly controlled TB. Russian-based therapy (i.e., not DOTS) has been criticized by Kimerling et al. as “inadequate” in properly controlling TB incidence and transmission. Bobrik et al. note that treatment for MDR-TB is equally inconsistent; the second-line drugs used to treat the prisoners lack specific treatment guidelines, infrastructure, training, or follow-up protocols for prisoners reentering civilian life.
Totally drug-resistant tuberculosis (TDR-TB) is a generic term for tuberculosis strains that are resistant to a wider range of drugs than strains classified as extensively drug-resistant tuberculosis. TDR-TB has been identified in three countries; India, Iran, and Italy. The emergence of TDR-TB has been documented in four major publications. However, it is not yet recognised by the World Health Organization.
TDR-TB has resulted from further mutations within the bacterial genome to confer resistance, beyond those seen in XDR- and MDR-TB. Development of resistance is associated with poor management of cases. Drug resistance testing occurs in only 9% of TB cases worldwide. Without testing to determine drug resistance profiles, MDR- or XDR-TB patients may develop resistance to additional drugs. TDR-TB is relatively poorly documented, as many countries do not test patient samples against a broad enough range of drugs to diagnose such a comprehensive array of resistance. The United Nations' Special Programme for Research and Training in Tropical Diseases has set up a TDR Tuberculosis Specimen Bank to archive specimens of TDR-TB.