Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Viral infection is a very common cause of lymphoproliferative disorders. In children, the most common is believed to be congenital HIV infection because it is highly associated with acquired immunodeficiency, which often leads to lymphoproliferative disorders.
There are many lymphoproliferative disorders that are associated with organ transplantation and immunosuppressant therapies. In most reported cases, these cause B cell lymphoproliferative disorders; however, some T cell variations have been described. The T cell variations are usually caused by the prolonged use of T cell suppressant drugs, such as sirolimus, tacrolimus, or ciclosporin.
There is no information on birth ratios/rates, but "X-Linked SCID is the most common form of SCID and it has been estimated to account for 46% to 70% of all SCID cases."
This type of GvHD is associated with transfusion of un-irradiated blood to immunocompromised recipients. It can also occur in situations in which the blood donor is homozygous and the recipient is heterozygous for an HLA haplotype. It is associated with higher mortality (80-90%) due to involvement of bone marrow lymphoid tissue, however the clinical manifestations are similar to GVHD resulting from bone marrow transplantation. Transfusion-associated GvHD is rare in modern medicine. It is almost entirely preventable by controlled irradiation of blood products to inactivate the white blood cells (including lymphocytes) within.
X-linked severe combined immunodeficiency (X-SCID) is an immunodeficiency disorder in which the body produces very few T cells and NK cells. In the absence of T cell help, B cells become defective. It is an x-linked recessive trait, stemming from a mutated (abnormal) version of the IL2-RG gene located at xq13.1 on the X-chromosome, which is shared between receptors for IL-2, IL-4, IL-7, IL-9, IL-15 and IL-21.
Hyper IgM syndromes is a group of primary immune deficiency disorders characterized by defective CD40 signaling; "via" B cells affecting class switch recombination (CSR) and somatic hypermutation. Immunoglobulin (Ig) class switch recombination deficiencies are characterized by elevated serum Immunoglobulin M (IgM) levels and a considerable deficiency in Immunoglobulins G (IgG), A (IgA) and E (IgE). As a consequence, people with HIGM have decreased concentrations of serum IgG and IgA and normal or elevated IgM, leading to increased susceptibility to infections.
BENTA disease is a rare genetic disorder of the immune system. BENTA stands for "B cell expansion with NF-κB and T cell anergy" and is caused by germline heterozygous gain-of-function mutations in the gene CARD11 (see OMIM entry #607210). This disorder is characterized by polyclonal B cell lymphocytosis with onset in infancy, splenomegaly, lymphadenopathy, mild immunodeficiency, and increased risk of lymphoma. Investigators Andrew L. Snow and Michael J. Lenardo at the National Institute of Allergy and Infectious Disease at the U.S. National Institutes of Health first characterized BENTA disease in 2012. Dr. Snow's current laboratory at the Uniformed Services University of the Health Sciences is now actively studying this disorder.
EATL is most frequent in Europe, where it represents 9.4% of all peripheral T cell lymphomas. Association with celiac disease is consistently demonstrated in only 30% of patients. The global incidence of this lymphoma is rare, being about 0.5 to 1 per million.
Lymphocyte-variant hypereosinophilia usually takes a benign and indolent course. Long term treatment with corticosteroids lowers blood eosinophil levels as well as suppresses and prevents complications of the disease in >80% of cases. However, signs and symptoms of the disease recur in virtually all cases if corticosteroid dosages are tapered in order to reduce the many adverse side effects of corticosteroids. Alternate treatments used to treat corticosteroid resistant disease or for use as corticosteroid-sparing substitutes include interferon-α or its analog, Peginterferon alfa-2a, Mepolizumab (an antibody directed against IL-5), Ciclosporin (an Immunosuppressive drug), imatinib (an inhibitor of tyrosine kinases; numerous tyrosine kinase cell signaling proteins are responsible for the growth and proliferation of eosinophils {see clonal eosinophilia}), methotrexate and Hydroxycarbamide (both are chemotherapy and immunosuppressant drugs), and Alemtuzumab (a antibody that binds to the CD52 antigen on mature lymphocytes thereby marking them for destruction by the body). The few patients who have been treated with these alternate drugs have exhibited good responses in the majority of instances. Reslizumab, a newly developed antibody directed against interleukin 5 that has been successfully used to treat 4 patients with the hypereosinophilic syndrome, may also be of use for lymphocyte-variant eosinophilia. Patients suffering minimal or no disease complications have gone untreated.
In 10% to 25% of patients, mostly 3 to 10 years after initical diagnosis, the indolent course of lymphocyte-variant hypereosinophilia changes. Patients exhibit rapid increases in lymphadenopathy, spleen size, and blood cell numbers, some cells of which take on the appearance of immature and/or malignant cells. Their disease soon thereafter escalates to an angioimmunoblastic T-cell lymphoma, peripheral T cell lymphoma, Anaplastic large-cell lymphoma (which unlike most lymphomas of this type is Anaplastic lymphoma kinase-negative), or Cutaneous T cell lymphoma. The malignantly transformed disease is aggressive and has a poor prognosis. Recommended treatment includes chemotherapy with Fludarabine, Cladribine, or the CHOP combination of drugs followed by bone marrow transplantation.
Different genetic defects cause HIgM syndrome, the vast majority are inherited as an X-linked recessive genetic trait and most sufferers are male.
IgM is the form of antibody that all B cells produce initially, before they undergo class switching due to exposure to a recognized antigen. Healthy B cells efficiently switch to other types of antibodies as needed to attack invading bacteria, viruses, and other pathogens. In people with hyper IgM syndromes, the B cells keep making IgM antibodies because they can't switch to a different antibody. This results in an overproduction of IgM antibodies and an underproduction of IgA, IgG, and IgE.
Individuals with BENTA disease have polyclonal B cell lymphocytosis (i.e. excess B cells) developing in infancy, in addition to splenomegaly and lymphadenopathy. Patients may have low serum IgM and mildly anergic T cells. These features likely contribute to the mild immunodeficiency seen with BENTA disease. Patients are generally susceptible to recurrent sinopulmonary and ear infections in childhood, and may be more susceptible to certain viruses including Epstein-Barr virus, BK virus, and molluscum contagiosum.
The regulatory T cells (Tregs ), formerly known as suppressor T cells, are a subpopulation of T cells that modulate the immune system, maintain tolerance to self-antigens, and prevent autoimmune disease. Tregs are immunosuppressive and generally suppress or downregulate induction and proliferation of effector T cells. Tregs express the biomarkers CD4, FOXP3, and CD25 and are thought to be derived from the same lineage as naïve CD4 cells. Because effector T cells also express CD4 and CD25, Tregs are very difficult to effectively discern from effector CD4+, making them difficult to study. Recent research has found that the cytokine TGFβ is essential for Tregs to differentiate from naïve CD4+ cells and is important in maintaining Treg homeostasis.
Mouse models have suggested that modulation of Tregs can treat autoimmune disease and cancer and can facilitate organ transplantation. Their implications for cancer are complicated. Tregs tend to be upregulated in individuals with cancer, and they seem to be recruited to the site of many tumors. Studies in both humans and animal models have implicated that high numbers of Tregs in the tumor microenvironment is indicative of a poor prognosis, and Tregs are thought to suppress tumor immunity, thus hindering the body's innate ability to control the growth of cancerous cells. Recent immunotherapy research is studying how regulation of T cells could possibly be utilized in the treatment of cancer.
Thymus transplantation may be said to be able to cause a special type of GvHD because the recipient's thymocytes would use the donor thymus cells as models when going through the negative selection to recognize self-antigens, and could therefore still mistake own structures in the rest of the body for being non-self. This is a rather indirect GvHD because it is not directly cells in the graft itself that causes it but cells in the graft that make the recipient's T cells act like donor T cells. It can be seen as a multiple-organ autoimmunity in xenotransplantation experiments of the thymus between different species. Autoimmune disease is a frequent complication after human allogeneic thymus transplantation, found in 42% of subjects over 1 year post transplantation. However, this is partially explained by the fact that the indication itself, that is, complete DiGeorge syndrome, increases the risk of autoimmune disease.
Natural killer T (NKT) cells are a heterogeneous group of T cells that share properties of both T cells and natural killer cells. Many of these cells recognize the non-polymorphic CD1d molecule, an antigen-presenting molecule that binds self and foreign lipids and glycolipids. They constitute only approximately 0.1% of all blood T cells. Natural killer T cells should not be confused with natural killer cells.
A T cell, or T lymphocyte, is a type of lymphocyte (a subtype of white blood cell) that plays a central role in cell-mediated immunity. T cells can be distinguished from other lymphocytes, such as B cells and natural killer cells, by the presence of a T-cell receptor on the cell surface. They are called "T cells" because they mature in the thymus from thymocytes (although some also mature in the tonsils). The several subsets of T cells each have a distinct function. The majority of human T cells rearrange their alpha and beta chains on the cell receptor and are termed alpha beta T cells (αβ T cells) and are part of the adaptive immune system. Specialized gamma delta T cells, (a small minority of T cells in the human body, more frequent in ruminants), have invariant T-cell receptors with limited diversity, that can effectively present antigens to other T cells and are considered to be part of the innate immune system.
A naïve T cell (T0 cell) is a T cell that has differentiated in bone marrow, and successfully undergone the positive and negative processes of central selection in the thymus. Among these are the naïve forms of helper T cells (CD4+) and cytotoxic T cells (CD8+). A naïve T cell is considered mature and, unlike activated or memory T cells, has not encountered its cognate antigen within the periphery.
Serology (detection on antibodies to a specific pathogen or antigen) is often used to diagnose viral diseases. Because XLA patients lack antibodies, these tests always give a negative result regardless of their real condition. This applies to standard HIV tests. Special blood tests (such as the western blot based test) are required for proper viral diagnosis in XLA patients.
It is not recommended and dangerous for XLA patients to receive live attenuated vaccines such as live polio, or the measles, mumps, rubella (MMR vaccine). Special emphasis is given to avoiding the oral live attenuated SABIN-type polio vaccine that has been reported to cause polio to XLA patients. Furthermore, it is not known if active vaccines in general have any beneficial effect on XLA patients as they lack normal ability to maintain immune memory.
XLA patients are specifically susceptible to viruses of the Enterovirus family, and mostly to: polio virus, coxsackie virus (hand, foot, and mouth disease) and Echoviruses. These may cause severe central nervous system conditions as chronic encephalitis, meningitis and death. An experimental anti-viral agent, pleconaril, is active against picornaviruses. XLA patients, however, are apparently immune to the Epstein-Barr virus (EBV), as they lack mature B cells (and so HLA co-receptors) needed for the viral infection. Patients with XLA are also more likely to have a history of septic arthritis.
It is not known if XLA patients are able to generate an allergic reaction, as they lack functional IgE antibodies.There is no special hazard for XLA patients in dealing with pets or outdoor activities. Unlike in other primary immunodeficiencies XLA patients are at no greater risk for developing autoimmune illnesses.
Agammaglobulinemia (XLA) is similar to the primary immunodeficiency disorder Hypogammaglobulinemia (CVID), and their clinical conditions and treatment are almost identical. However, while XLA is a congenital disorder, with known genetic causes, CVID may occur in adulthood and its causes are not yet understood.
XLA was also historically mistaken as Severe Combined Immunodeficiency (SCID), a much more severe immune deficiency ("Bubble boys").A strain of laboratory mouse, XID, is used to study XLA. These mice have a mutated version of the mouse Btk gene, and exhibit a similar, yet milder, immune deficiency as in XLA.
Lymphocyte-variant hypereosinophila, also termed lymphocyte variant eosinophilia, is a rare disorder in which eosinophilia or hypereosinophilia (i.e. a large or extremely large increase in the number of eosinophils in the blood circulation) is caused by aberrant population of lymphocytes. These aberrant lymphocytes function abnormally by stimulating the proliferation and maturation of bone marrow eosinophil-precursor cells termed colony forming unit-Eosinophils or CFU-Eos.
The overly stimulated CFU-Eos cells mature to apparently normal eosinophils, enter the circulation, and may accumulate in, and severely damage, various tissues. The disorder is usually indolent or slowly progressive but may proceed to a leukemic phase and at this phases is sometimes classified as acute eosinophilic leukemia. Hence, lymphocyte-variant hypereosinophilia can be regarded as a precancerous disease.
The order merits therapeutic intervention to avoid or reduce eosinophil-induced tissue injury and to treat its leukemic phase. The latter phase of the disease is aggressive and typically responds relatively poorly to anti-leukemia chemotherapeutic drug regimens.
Severe combined immunodeficiency, SCID, also known as alymphocytosis, Glanzmann–Riniker syndrome, severe mixed immunodeficiency syndrome, and thymic alymphoplasia, is a rare genetic disorder characterized by the disturbed development of functional T cells and B cells caused by numerous genetic mutations that result in heterogeneous clinical presentations. SCID involves defective antibody response due to either direct involvement with B lymphocytes or through improper B lymphocyte activation due to non-functional T-helper cells. Consequently, both "arms" (B cells and T cells) of the adaptive immune system are impaired due to a defect in one of several possible genes. SCID is the most severe form of primary immunodeficiencies, and there are now at least nine different known genes in which mutations lead to a form of SCID. It is also known as the bubble boy disease and bubble baby disease because its victims are extremely vulnerable to infectious diseases and some of them, such as David Vetter, have become famous for living in a sterile environment. SCID is the result of an immune system so highly compromised that it is considered almost absent.
SCID patients are usually affected by severe bacterial, viral, or fungal infections early in life and often present with interstitial lung disease, chronic diarrhoea, and failure to thrive. Ear infections, recurrent "Pneumocystis jirovecii" (previously carinii) pneumonia, and profuse oral candidiasis commonly occur. These babies, if untreated, usually die within one year due to severe, recurrent infections unless they have undergone successful hematopoietic stem cell transplantation.
Enteropathy-associated T-cell lymphoma (EATL), also enteropathy-type T-cell lymphoma (ETTL), is a type of T-cell lymphoma that affects the small intestine. It is the most common primary gastrointestinal T-cell lymphoma, arising from the T cells that are found between the cells that line the small intestinal (brush border cells or small intestinal epithelial cells). These cancerous T-cells are a possible consequence of refractory cases of coeliac disease or in chronic, untreated cases in genetically susceptible individuals.
By definition, primary immune deficiencies are due to genetic causes. They may result from a single genetic defect, but most are multifactorial. They may be caused by recessive or dominant inheritance. Some are latent, and require a certain environmental trigger to become manifest, like the presence in the environment of a reactive allergen. Other problems become apparent due to aging of bodily and cellular maintenance processes.
Xanthogranulomatous osteomyelitis (XO) is a peculiar aspect of osteomyelitis characterized by prevalent histiocytic infiltrate and foamy macrophage clustering.
A second regimen under evaluation is R-EPOCH (rituximab with etoposide-prednisone-vincristine-doxorubicin-cyclophosphamide), which demonstrated a 5-year progression-free survival (PFS) of 79% in a phase II trial. A phase III trial, CALGB 50303, is now comparing R-EPOCH with R-CHOP in patients with newly diagnosed DLBCL.
One area of active research is on separating patients into groups based on their prognosis and how likely they are to benefit from different drugs. Methods like gene expression profiling and next-generation sequencing may result in more effective and more personalized treatment.
Dendritic cells (DCs) are antigen-presenting cells (also known as "accessory cells") of the mammalian immune system. Their main function is to process antigen material and present it on the cell surface to the T cells of the immune system. They act as messengers between the innate and the adaptive immune systems.
Dendritic cells are present in those tissues that are in contact with the external environment, such as the skin (where there is a specialized dendritic cell type called the Langerhans cell) and the inner lining of the nose, lungs, stomach and intestines. They can also be found in an immature state in the blood. Once activated, they migrate to the lymph nodes where they interact with T cells and B cells to initiate and shape the adaptive immune response. At certain development stages they grow branched projections, the "dendrites" that give the cell its name (δένδρον or déndron being Greek for "tree"). While similar in appearance, these are structures distinct from the dendrites of neurons. Immature dendritic cells are also called veiled cells, as they possess large cytoplasmic 'veils' rather than dendrites.
Genetic mutations in the gene encoding Foxp3 have been identified in both humans and mice based on the heritable disease caused by these mutations. This disease provides the most striking evidence that regulatory T cells play a critical role in maintaining normal immune system function. Humans with mutations in Foxp3 suffer from a severe and rapidly fatal autoimmune disorder known as Immune dysregulation, Polyendocrinopathy, Enteropathy X-linked (IPEX) syndrome.
The IPEX syndrome is characterized by the development of overwhelming systemic autoimmunity in the first year of life, resulting in the commonly observed triad of watery diarrhea, eczematous dermatitis, and endocrinopathy seen most commonly as insulin-dependent diabetes mellitus. Most individuals have other autoimmune phenomena including Coombs-positive hemolytic anemia, autoimmune thrombocytopenia, autoimmune neutropenia, and tubular nephropathy. The majority of affected males die within the first year of life of either metabolic derangements or sepsis. An analogous disease is also observed in a spontaneous Foxp3-mutant mouse known as "scurfy".