Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Vasculitis secondary to connective tissue disorders. Usually secondary to systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), relapsing polychondritis, Behçet's disease, and other connective tissue disorders.
Vasculitis secondary to viral infection. Usually due to hepatitis B and C, HIV, cytomegalovirus, Epstein-Barr virus, and Parvo B19 virus.
Patients usually present with systemic symptoms with single or multiorgan dysfunction. Common (and nonspecific) complaints include fatigue, weakness, fever, arthralgias, abdominal pain, hypertension, renal insufficiency, and neurologic dysfunction. The following symptoms should raise a strong suspicion of a vasculitis:
- Mononeuritis multiplex. Also known as asymmetric polyneuropathy, in a non-diabetic this is suggestive of vasculitis.
- Palpable purpura. If patients have this in isolation, it is most likely due to cutaneous leukocytoclastic vasculitis. If the purpura is in combination with systemic organ involvement, it is most likely to be Henoch-Schonlein purpura or microscopic polyarteritis.
- Pulmonary-renal syndrome. Individuals who are coughing up blood and have kidney involvement are likely to have granulomatosis with polyangiitis, microscopic polyangiitis, or anti-GBM disease (Goodpasture's syndrome).
The condition affects adults more frequently than children and males more frequently than females. Most cases occur between the ages of 30 and 49. It damages the tissues supplied by the affected arteries because they do not receive enough oxygen and nourishment without a proper blood supply. Polyarteritis nodosa is more common in people with hepatitis B infection.
Treatment involves medications to suppress the immune system, including prednisone and cyclophosphamide. In some cases, methotrexate or leflunomide may be helpful. Some patients have also noticed a remission phase when a four-dose infusion of rituximab is used before the leflunomide treatment is begun. Therapy results in remissions or cures in 90% of cases. Untreated, the disease is fatal in most cases. The most serious associated conditions generally involve the kidneys and gastrointestinal tract. A fatal course usually involves gastrointestinal bleeding, infection, myocardial infarction, and/or kidney failure.
In case of remission, about 60% experience relapse within five years. In cases caused by hepatitis B virus, however, recurrence rate is only around 6%.
Before modern treatments, the 2-year mortality was over 90% and average survival five months. Death usually resulted from uremia or respiratory failure.
With corticosteroids and cyclophosphamide, 5-year survival is over 80%. Long-term complications are common (86%), mainly chronic kidney failure, hearing loss and deafness.
Today, drug toxicity is managed more carefully and long-term remissions are possible. Some patients are able to lead relatively normal lives and remain in remission for 20+ years after treatment.
Overall prognosis is good in most patients, with one study showing recovery occurring in 94% and 89% of children and adults, respectively (some having needed treatment). In children under ten, the condition recurs in about a third of all cases and usually within the first four months after the initial attack. Recurrence is more common in older children and adults.
Vasculitis is a group of disorders that destroy blood vessels by inflammation. Both arteries and veins are affected. Lymphangitis is sometimes considered a type of vasculitis. Vasculitis is primarily caused by leukocyte migration and resultant damage.
Although both occur in vasculitis, inflammation of veins (phlebitis) or arteries (arteritis) are their own are separate entities.
HSP occurs more often in children than in adults, and usually follows an upper respiratory tract infection. Half of affected patients are below the age of six, and 90% are under ten. It occurs about twice as often in boys as in girls. The incidence of HSP in children is about 20 per 100,000 children per year, making it the most common vasculitis in children.
Cases of HSP may occur anytime throughout the year, but some studies have found that fewer cases occur during the summer months.
The incidence is 10–20 cases per million per year. It is exceedingly rare in Japan and with African Americans.
The third and final stage, and hallmark of EGPA, is inflammation of the blood vessels, and the consequent reduction of blood flow to various organs and tissues. Local and systemic symptoms become more widespread and are compounded by new symptoms from the vasculitis.
Severe complications may arise. Blood clots may develop within the damaged arteries in severe cases, particularly in arteries of the abdominal region, which is followed by infarction and cell death, or slow atrophy. Many patients experience severe abdominal complaints; these are most often due to peritonitis and/or ulcerations and perforations of the gastrointestinal tract, but occasionally due to acalculous cholecystitis or granulomatous appendicitis.
The most serious complication of the vasculitic stage is heart disease, which is the cause of nearly one-half of all deaths in patients with EGPA. Among heart disease-related deaths, the most usual cause is inflammation of the heart muscle caused by the high level of eosinophils, although some are deaths due to inflammation of the arteries that supply blood to the heart or pericardial tamponade. Kidney complications have been reported as being less common.
Vasculitis can be classified by the cause, the location, the type of vessel or the size of vessel.
- "Underlying cause". For example, the cause of syphilitic aortitis is infectious (aortitis simply refers to inflammation of the aorta, which is an artery.) However, the causes of many forms of vasculitis are poorly understood. There is usually an immune component, but the trigger is often not identified. In these cases, the antibody found is sometimes used in classification, as in ANCA-associated vasculitides.
- "Location of the affected vessels". For example, ICD-10 classifies "vasculitis limited to skin" with skin conditions (under "L"), and "necrotizing vasculopathies" (corresponding to systemic vasculitis) with musculoskeletal system and connective tissue conditions (under "M"). Arteritis/phlebitis on their own are classified with circulatory conditions (under "I").
- "Type or size of the blood vessels" that they predominantly affect. Apart from the arteritis/phlebitis distinction mentioned above, vasculitis is often classified by the caliber of the vessel affected. However, there can be some variation in the size of the vessels affected.
According to the size of the vessel affected, vasculitis can be classified into:
- Large vessel: Polymyalgia rheumatica, Takayasu's arteritis, Temporal arteritis
- Medium vessel: Buerger's disease, Kawasaki disease, Polyarteritis nodosa
- Small vessel: Behçet's syndrome, Eosinophilic granulomatosis with polyangiitis, Cutaneous vasculitis, Henoch–Schönlein purpura, Microscopic polyannulomatosis ConditionofSome disorders have vasculitis as their main feature. The major types are given in the table below:
Takayasu's arteritis, polyarteritis nodosa and giant cell arteritis mainly involve arteries and are thus sometimes classed specifically under arteritis.
Furthermore, there are many conditions that have vasculitis as an accompanying or atypical feature, including:
- Rheumatic diseases, such as rheumatoid arthritis, systemic lupus erythematosus, and dermatomyositis
- Cancer, such as lymphomas
- Infections, such as hepatitis C
- Exposure to chemicals and drugs, such as amphetamines, cocaine, and anthrax vaccines which contain the Anthrax Protective Antigen as the primary ingredient.
In pediatric patients varicella inflammation may be followed by vasculitis of intracranial vessels. This condition is called post varicella angiopathy and this may be responsible for arterial ischaemic strokes in children.
Several of these vasculitides are associated with antineutrophil cytoplasmic antibodies. These are:
- Granulomatosis with polyangiitis (formerly known as Wegener's granulomatosis)
- Eosinophilic granulomatosis with polyangiitis (formerly known as Churg-Strauss syndrome)
- Microscopic polyangiitis
Microscopic polyangiitis is an ill-defined autoimmune disease characterized by a systemic, pauci-immune, necrotizing, small-vessel vasculitis without clinical or pathological evidence of necrotizing granulomatous inflammation.
Eosinophilic granulomatosis with polyangiitis (EGPA; also known as Churg-Strauss syndrome [CSS] or allergic granulomatosis) is an extremely rare autoimmune condition that causes inflammation of small and medium-sized blood vessels (vasculitis) in persons with a history of airway allergic hypersensitivity (atopy).
It usually manifests in three stages. The early (prodromal) stage is marked by airway inflammation; almost all patients experience asthma and/or allergic rhinitis. The second stage is characterized by abnormally high numbers of eosinophils (hypereosinophilia), which causes tissue damage, most commonly to the lungs and the digestive tract. The third stage consists of vasculitis, which can eventually lead to cell death and can be life-threatening.
This condition is now called "eosinophilic granulomatosis with polyangiitis" to remove all eponyms from the vasculitides. To facilitate the transition, it was referred to as "eosinophilic granulomatosis with polyangiitis (Churg-Strauss)" for a period of time starting in 2012. Prior to this it was known as "Churg-Strauss syndrome", named after Drs. Jacob Churg and Lotte Strauss who, in 1951, first published about the syndrome using the term "allergic granulomatosis" to describe it. It is a type of systemic necrotizing vasculitis.
Effective treatment of EGPA requires suppression of the immune system with medication. This is typically glucocorticoids, followed by other agents such as cyclophosphamide or azathioprine.
Cutaneous vasculitis can have various causes including but not limited to medications, bacterial and viral infections or allergens. It is estimated that 45-55% of cases are idiopathic, meaning the cause is unknown. In cases where a cause can be determined, medications and infectious pathogens are most common in adults, while IgA vasculitis (Henoch-Schönlein purpura) frequently affects children. Other etiologies include autoimmune conditions and malignancies, usually hematologic (related to the blood).
The small vessels in the skin affected are located in the superficial dermis and include arterioles (small arteries carrying blood to capillaries), capillaries, and venules (small veins receiving blood from capillaries). In general, immune complexes deposit in vessel walls leading to activation of the complement system. C3a and C5a, proteins produced from the complement system, attract neutrophils to the vessels. Once activated, neutrophils then release preformed substances, including enzymes causing damage to vessel tissue. Evidence of this process can be seen with a sample of removed skin tissue, or biopsy, viewed under a microscope. Neutrophils are seen surrounding blood vessels and their debris within vessel walls, causing fibrinoid necrosis. This finding on histological examination is termed “leukocytoclastic vasculitis”.
Considering the wide range of potential causes leading to cutaneous small vessel vasculitis, there are subtle variations in the underlying pathophysiology for each cause. For example, medications are metabolized to smaller molecules that can attach to proteins in the blood or vessel walls. The immune system senses these altered proteins as foreign and produces antibodies in efforts to eliminate them from the body. A similar process occurs with infectious agents, such as bacteria, in which antibodies target microbial components.
"Primary" Central Nervous System (CNS) vasculitis is said to be present if there is no underlying cause. The exact mechanism of the primary disease is unknown, but the fundamental mechanism of all vasculitides is auto-immune. Other possible causes of cerebral vasculitis are infections, systemic auto-immune diseases such as systemic lupus erythematosus (SLE) and rheumatoid arthritis, medications and drugs (amphetamine, cocaine and heroin), some forms of cancer (lymphomas, leukemia and lung cancer) and other forms of systemic vasculitis such as granulomatosis with polyangiitis, polyarteritis nodosa or Behçet's disease. It may imitate, and is in turn imitated by, a number of other diseases that affect the blood vessels of the brain diffusely such as fibromuscular dysplasia and thrombotic thrombocytopenic purpura.
Antibodies are usually raised against foreign proteins, such as those made by a replicating virus or invading bacterium. Virus or bacteria with antibodies opsonized or "stuck" to them highlight them to other cells of the immune system for clearance.
Antibodies against self proteins are known as autoantibodies, and are not found in healthy individuals. These autoantibodies can be used to detect certain diseases.
The customary treatment involves long term dosage of prednisone, alternated or combined with cytotoxic drugs, such as cyclophosphamide or azathioprine.
Plasmapheresis may also be indicated in the acute setting to remove ANCA antibodies.
Rituximab has been investigated, and in April 2011 approved by the FDA when used in combination with glucocorticoids in adult patients.
Cutaneous small-vessel vasculitis, also known as hypersensitivity vasculitis, cutaneous leukocytoclastic vasculitis, hypersensitivity angiitis, cutaneous leukocytoclastic angiitis, cutaneous necrotizing vasculitis and cutaneous necrotizing venulitis, is inflammation of small blood vessels (usually post-capillary venules in the dermis), characterized by palpable purpura. It is the most common vasculitis seen in clinical practice.
"Leukocytoclastic" refers to the damage caused by nuclear debris from infiltrating neutrophils in and around the vessels.
While the prognosis of cryofibrinoginemic disease varies greatly depending on its severity as well as the severity of its associated disorders, satisfactory clinical outcomes are reported in 50-80% of patients with primary or secondary disease treated with corticosteroid and/or immunosuppressive regimens. However, relapses occur within the first 6 months after stopping or decreasing therapy in 40-76% of cases. Sepsis resulting from infection of necrotic tissue is the most common threat to life in primary disease whereas the associated disorder is a critical determinant of prognosis in secondary disease.
These are also referred to as systemic autoimmune diseases. The autoimmune CTDs may have both genetic and environmental causes. Genetic factors may create a predisposition towards developing these autoimmune diseases. They are characterized as a group by the presence of spontaneous overactivity of the immune system that results in the production of extra antibodies into the circulation. The classic collagen vascular diseases have a "classic" presentation with typical findings that doctors can recognize during an examination. Each also has "classic" blood test abnormalities and abnormal antibody patterns. However, each of these diseases can evolve slowly or rapidly from very subtle abnormalities before demonstrating the classic features that help in the diagnosis. The classic collagen vascular diseases include:
- Systemic lupus erythematosus (SLE) – An inflammation of the connective tissues, SLE can afflict every organ system. It is up to nine times more common in women than men and strikes black women three times as often as white women. The condition is aggravated by sunlight.
- Rheumatoid arthritis – Rheumatoid arthritis is a systemic disorder in which immune cells attack and inflame the membrane around joints. It also can affect the heart, lungs, and eyes. Of the estimated 2.1 million Americans with rheumatoid arthritis, approximately 1.5 million (71 percent) are women.
- Scleroderma – an activation of immune cells that produces scar tissue in the skin, internal organs, and small blood vessels. It affects women three times more often than men overall, but increases to a rate 15 times greater for women during childbearing years, and appears to be more common among black women.
- Sjögren's syndrome – also called Sjögren's disease, is a chronic, slowly progressing inability to secrete saliva and tears. It can occur alone or with rheumatoid arthritis, scleroderma, or systemic lupus erythematosus. Nine out of 10 cases occur in women, most often at or around mid-life.
- Mixed connective tissue disease – Mixed connective-tissue disease (MCTD) is a disorder in which features of various connective-tissue diseases (CTDs) such as systemic lupus erythematosus (SLE); systemic sclerosis (SSc); dermatomyositis (DM); polymyositis (PM); anti-synthetase syndrome; and, occasionally, Sjögren syndrome can coexist and overlap. The course of the disease is chronic and usually milder than other CTDs. In most cases, MCTD is considered an intermediate stage of a disease that eventually becomes either SLE or Scleroderma.
- Undifferentiated connective tissue disease (UCTD) is a disease in which the body mistakenly attacks its own tissues. It is diagnosed when there is evidence of an existing autoimmune condition which does not meet the criteria for any specific autoimmune disease, such as systemic lupus erythematosus or scleroderma. Latent lupus and incomplete lupus are alternative terms that have been used to describe this condition.
- Psoriatic arthritis is also a collagen vascular disease.
Cerebral vasculitis or central nervous system vasculitis (sometimes the word angiitis is used instead of "vasculitis") is vasculitis (inflammation of the blood vessel wall) involving the brain and occasionally the spinal cord. It affects all of the vessels: very small blood vessels (capillaries), medium-size blood vessels (arterioles and venules), or large blood vessels (arteries and veins). If blood flow in a vessel with vasculitis is reduced or stopped, the parts of the body that receive blood from that vessel begins to die. It may produce a wide range of neurological symptoms, such as headache, skin rashes, feeling very tired, joint pains, difficulty moving or coordinating part of the body, changes in sensation, and alterations in perception, thought or behavior, as well as the phenomena of a mass lesion in the brain leading to coma and herniation. Some of its signs and symptoms may resemble multiple sclerosis. 10% have associated bleeding in the brain.
A rare autoimmune disease characterized by recurrent urticaria (nettle rash), first described in the 1970s. There is no defined paradigm for the syndrome aetiology and severity in progression. Diagnosis is confirmed with the identification of at least two conditions from: venulitis on skin biopsy, arthritis, ocular inflammation, abdominal pain or positive C1q antibodies to immune complexes. It is this last category, anti-C1q antibodies, that all HUV patients test positive for. "In vitro" experiments and mouse models of the disease have not thoroughly determined the link between these antibodies and the disease, even though the link is so pronounced.
Alpha-1 antitrypsin deficiency panniculitis is a panniculitis associated with a deficiency of the α-antitrypsin enzyme.
Kawasaki disease affects boys more than girls, with people of Asian ethnicity, particularly Japanese and Korean people, most susceptible, as well as people of Afro-Caribbean ethnicity. The disease was rare in Caucasians until the last few decades, and incidence rates fluctuate from country to country.
Currently, Kawasaki disease is the most commonly diagnosed pediatric vasculitis in the world. By far, the highest incidence of Kawasaki disease occurs in Japan, with the most recent study placing the attack rate at 218.6 per 100,000 children <5 years of age (about one in 450 children). At this present attack rate, more than one in 150 children in Japan will develop Kawasaki disease during their lifetimes.
However, its incidence in the United States is increasing. Kawasaki disease is predominantly a disease of young children, with 80% of patients younger than five years of age. About 2,000-4,000 cases are identified in the U.S. each year (9 to 19 per 100,000 children younger than 5 years of age).
In the United Kingdom, estimates of incidence rate vary because of the rarity of Kawasaki disease. However, it is believed to affect fewer than one in every 25,000 people. Incidence of the disease doubled from 1991 to 2000, however, with four cases per 100,000 children in 1991 compared with a rise of eight cases per 100,000 in 2000.
In the continental United States, Kawasaki Disease is more common during the winter and early spring, boys with the disease outnumber girls by ≈1.5–1.7:1, and 76% of affected children are <5 years of age.
Although it may occur in the absence of other known disease, SS is often associated with hematologic disease (including leukemia), and immunologic disease (rheumatoid arthritis, inflammatory bowel disease, Behçet's syndrome).
A genetic association has been suggested, but no specific genetic link has been identified.